Skip to main content
Log in

A perturbation approach to studying sign-changing solutions of Kirchhoff equations with a general nonlinearity

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

By employing a nonlocal perturbation approach and the method of invariant sets of descending flow, this manuscript investigates the existence and multiplicity of sign-changing solutions to a class of semilinear Kirchhoff equations in the following form

$$\begin{aligned} -\left( a+ b\int _{\mathbb {R}^3}|\nabla u|^2\right) \Delta {u}+V(x)u=f(u),\,\,x\in \mathbb {R}^3, \end{aligned}$$

where \(a,b>0\) are constants, \(V\in C(\mathbb {R}^3,\mathbb {R})\), \(f\in C(\mathbb {R},\mathbb {R})\). The methodology proposed in the current paper is robust, in the sense that, neither the monotonicity condition on f nor the coercivity condition on V is required. Our result improves the study made by Deng et al. (J Funct Anal 269:3500–3527, 2015), in the sense that, in the present paper, the nonlinearities include the power-type case \(f(u)=|u|^{p-2}u\) for \(p\in (2,4)\), in which case, it remains open in the existing literature whether there exist infinitely many sign-changing solutions to the problem above. Moreover, energy doubling is established, namely, the energy of sign-changing solutions is strictly larger than two times that of the ground state solutions for small \(b>0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ackermann, N., Weth, T.: Multibump solutions of nonlinear periodic Schrödinger equations in a degenerate setting. Commun. Contemp. Math. 7, 1–30 (2005)

    MathSciNet  MATH  Google Scholar 

  2. Alves, C., Corrêa, F., Figueiredo, G.: On a class of nonlocal elliptic problems with critical growth. Differ. Equ. Appl. 2, 409–417 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Alves, C., Corrêa, F., Ma, T.-F.: Positive solutions for a quasilinear elliptic equation of Kirchhoff type. Comput. Math. Appl. 49, 85–93 (2005)

    MathSciNet  MATH  Google Scholar 

  4. Alves, C., Figueiredo, G.: Nonlinear perturbations of a periodic Krichhoff equation in \({\mathbb{R}}^{N}\). Nonlinear Anal. 75, 2750–2759 (2012)

    MathSciNet  MATH  Google Scholar 

  5. Arosio, A., Panizzi, S.: On the well-posedness of the Kirchhoff string. Trans. Am. Math. Soc. 348, 305–330 (1996)

    MathSciNet  MATH  Google Scholar 

  6. Azzollini, A.: The elliptic Kirchhoff equation in \({\mathbb{R}}^N\) perturbed by a local nonlinearity. Differ. Int. Equ. 25, 543–554 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Bartsch, T., Liu, Z., Weth, T.: Sign-changing solutions of superlinear Schrödinger equations. Commun. Partial Differ. Equ. 29, 25–42 (2004)

    MATH  Google Scholar 

  8. Bartsch, T., Liu, Z., Weth, T.: Nodal solutions of a p-Laplacian equation. Proc. Lond. Math. Soc. 91, 129–152 (2005)

    MathSciNet  MATH  Google Scholar 

  9. Bartsch, T., Willem, M.: Infinitely many radial solutions of a semilinear elliptic problem on \({\mathbb{R}}^N\). Arch. Ration. Mech. Anal. 124, 261–276 (1993)

    MATH  Google Scholar 

  10. Cao, D., Zhu, X.: On the existence and nodal character of semilinear elliptic equations. Acta Math. Sci. 8, 345–359 (1988)

    MathSciNet  MATH  Google Scholar 

  11. Cassani, D., Liu, Z., Tarsi, C., Zhang, J.: Multiplicity of sign-changing solutions for Kirchhoff-type equations. Nonlinear Anal. 186, 145–161 (2019)

    MathSciNet  MATH  Google Scholar 

  12. Cassani, D., Vilasi, L., Zhang, J.: Concentration phenomena at saddle points of potential for Schrödinger-Poisson systems. Commun. Pure Appl. Anal. 20, 1737 (2021). https://doi.org/10.3934/cpaa.2021039

    Article  MathSciNet  MATH  Google Scholar 

  13. Cavalcanti, M., Cavalcanti, V., Soriano, J.: Global existence and uniform decay rates for the Kirchhoff-Carrier equation with nonlinear dissipation. Adv. Differ. Equ. 6, 701–730 (2001)

    MathSciNet  MATH  Google Scholar 

  14. Cerami, G., Solimini, S., Struwe, M.: Some existence results for superlinear elliptic boundary value problems involving critical exponents. J. Funct. Anal. 69, 289–306 (1986)

    MathSciNet  MATH  Google Scholar 

  15. Chang, K.: Heat method in nonlinear elliptic equations. In: Methods, T. (ed.) Variational Methods and Their Applications (Taiyuan, 2002), pp. 65–76. World Sci Publ, River Edge (2003)

    Google Scholar 

  16. Chang, K., Jiang, M.: Dirichlet problem with indefinite nonlinearities. Calc. Var. Partial Differ. Equ. 20, 257–282 (2004)

    MathSciNet  MATH  Google Scholar 

  17. Chipot, M., Lovat, B.: Some remarks on non local elliptic and parabolic problems. Nonlinear Anal. 30, 4619–4627 (1997)

    MathSciNet  MATH  Google Scholar 

  18. Deng, Y., Peng, S., Shuai, W.: Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in \({\mathbb{R}}^3\). J. Funct. Anal. 269, 3500–3527 (2015)

    MathSciNet  MATH  Google Scholar 

  19. Figueiredo, G., Ikoma, N., Junior, J.: Existence and concentration result for the Kirchhoff type equations with general nonlinearities. Arch. Ration. Mech. Anal. 213, 931–979 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Gu, L., Jin, H., Zhang, J.: Sign-changing solutions for nonlinear Schrödinger-Poisson systems with subquadratic or quadratic growth at infinity. Nonlinear Anal. 198, 111897 (2020)

    MathSciNet  MATH  Google Scholar 

  21. He, X., Zou, W.: Existence and concentration behavior of positive solutions for a Kirchhoff equation in \({\mathbb{R}}^3\). J. Differ. Equ. 252, 1813–1834 (2012)

    MATH  Google Scholar 

  22. He, Y., Li, G.: Standing waves for a class of Kirchhoff type problems in \({\mathbb{R}}^3\) involving critical Sobolev exponents. Calc. Var. Partial Differ. Equ. 54, 3067–3106 (2015)

    MATH  Google Scholar 

  23. He, Y.: Concentrating bounded states for a class of singularly perturbed Kirchhoff type equations with a general nonlinearity. J. Differ. Equ. 261, 6178–6220 (2016)

    MathSciNet  MATH  Google Scholar 

  24. Jeanjean, L.: On the existence of bounded Palais-Smale sequence and application to a Landesman-Lazer type problem set on \({\mathbb{R}}^N\). Proc. R. Soc. Edinb. Sect. A 129, 787–809 (1999)

    MATH  Google Scholar 

  25. Kabeya, Y., Tanaka, K.: Uniqueness of positive radial solutions of semilinear elliptic equations in \({\mathbb{R}}^N\) and Séré’s non-degeneracy condition. Commun. Partial Differ. Equ. 24, 563–598 (1999)

  26. Kirchhoff, G.: Mechanik. Teubner, Leipzig (1883)

  27. Kuzin, I., Pohozaev, S.: Entire Solutions of Semilinear Elliptic Equations. Birkhäuser, Boston (1997)

    MATH  Google Scholar 

  28. Li, G., Ye, H.: Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in \({\mathbb{R}}^3\). J. Differ. Equ. 257, 566–600 (2014)

    MATH  Google Scholar 

  29. Liang, Z., Li, F., Shi, J.: Positive solutions to Kirchhoff type equations with nonlinearity having prescribed asymptotic behavior. Ann. Inst. H. Poincare Anal. Non Linéaire 31, 155–167 (2014)

    MathSciNet  MATH  Google Scholar 

  30. Lions, J.: On some questions in boundary value problems of mathematical physics. North-Holland Math. Stud. 30, 284–346 (1978)

    MathSciNet  Google Scholar 

  31. Liu, J., Liu, X., Wang, Z.-Q.: Multiple mixed states of nodal solutions for nonlinear Schrödinger systems. Calc. Var. Partial Differ. Equ. 52, 565–586 (2015)

    MATH  Google Scholar 

  32. Liu, Z., Wang, Z.-Q., Zhang, J.: Infinitely many sign-changing solutions for the nonlinear Schrödinger-Poisson system. Ann. Mat. 195, 775–794 (2016)

    MathSciNet  MATH  Google Scholar 

  33. Liu, Z., Guo, S.: Existence of positive ground state solutions for Kirchhoff type problems. Nonlinear Anal. 120, 1–13 (2015)

    MathSciNet  MATH  Google Scholar 

  34. Liu, Z., Squassina, M., Zhang, J.: Ground states for fractional Kirchhoff equations with critical nonlinearity in low dimension. Nonlinear Differ. Equ. Appl. 24, 50 (2017)

    MathSciNet  MATH  Google Scholar 

  35. Liu, Z., Zhang, Z., Huang, S.: Existence and nonexistence of positive solutions for a static Schrödinger–Poisson–Slater equation. J. Differ. Equ. 266, 5912–5941 (2019)

    MATH  Google Scholar 

  36. Liu, Z., Ouyang, Z., Zhang, J.: Existence and multiplicity of sign-changing standing waves for a gauged nonlinear Schrödinger equation in \({\mathbb{R}}^2\). Nonlinearity 32, 3082–3111 (2019)

    MathSciNet  MATH  Google Scholar 

  37. Liu, Z., Siciliano, G.: A perturbation approach for the Schrödinger–Born–Infeld system: solutions in the subcritical and critical case. J. Math. Anal. Appl. 503, 125326 (2021)

    MATH  Google Scholar 

  38. Liu, Z., Luo, H., Zhang, J.: Existence and multiplicity of bound state solutions to a Kirchhoff type equation with a general nonlinearity (2021). arXiv:2102.13422v1

  39. Lu, S.: Signed and sign-changing solutions for a Kirchhoff-type equation in bounded domains. J. Math. Anal. Appl. 432, 965–982 (2015)

    MathSciNet  MATH  Google Scholar 

  40. Ma, T., Rivera, J.: Positive solutions for a nonlinear nonlocal elliptic transmission problem. Appl. Math. Lett. 16, 243–248 (2003)

    MathSciNet  MATH  Google Scholar 

  41. Mao, A., Zhang, Z.: Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition. Nonlinear Anal. 70, 1275–1287 (2009)

    MathSciNet  MATH  Google Scholar 

  42. Nie, J., Wu, X.: Existence and multiplicity of non-trivial solutions for Schrödinger–Kirchhoff-type equations with radial potential. Nonlinear Anal. 75, 3470–3479 (2012)

    MathSciNet  MATH  Google Scholar 

  43. Perera, K., Zhang, Z.: Nontrivial solutions of Kirchhoff-type problems via the Yang index. J. Differ. Equ. 221, 246–255 (2006)

    MathSciNet  MATH  Google Scholar 

  44. Shuai, W.: Sign-changing solutions for a class of Kirchhoff-type problem in bounded domains. J. Differ. Equ. 259, 1256–1274 (2015)

    MathSciNet  MATH  Google Scholar 

  45. Strauss, W.: Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55, 149–162 (1977)

    MathSciNet  MATH  Google Scholar 

  46. Struwe, M.: On the evolution of harmonic mappings of Riemannian surfaces. Comment. Math. Helv. 60, 558–581 (1985)

    MathSciNet  MATH  Google Scholar 

  47. Sun, D., Zhang, Z.: Existence and asymptotic behaviour of ground state solutions for Kirchhoff-type equations with vanishing potentials. Z. Angew. Math. Phys. 70, 37 (2019)

    MathSciNet  MATH  Google Scholar 

  48. Sun, J., Li, L., Cencelj, M., Gabrov\(\check{s}\)ek, B.: Infinitely many sign-changing solutions for Kirchhoff type problems in \({\mathbb{R}}^3\). Nonlinear Anal. (2019). https://doi.org/10.1016/j.na.2018.10.007

  49. Sun, J., Wu, T.: Existence and multiplicity of solutions for an indefinite Kirchhoff-type equation in bounded domains. Proc. R. Soc. Edinb. Sect. A 146, 435–448 (2016)

    MathSciNet  MATH  Google Scholar 

  50. Tang, X., Cheng, B.: Ground state sign-changing solutions for Kirchhoff type problems in bounded domains. J. Differ. Equ. 261, 2384–2402 (2016)

    MathSciNet  MATH  Google Scholar 

  51. Wang, J., Tian, L., Xu, J., Zhang, F.: Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth. J. Differ. Equ. 253, 2314–2351 (2012)

    MathSciNet  MATH  Google Scholar 

  52. Weth, T.: Energy bounds for entire nodal solutions of autonomous superlinear equations. Calc. Var. Partial Differ. Equ. 27, 421–437 (2006)

    MathSciNet  MATH  Google Scholar 

  53. Wu, X.: Existence of nontrivial solutions and high energy solutions for Schrödinger–Kirchhoff-type equations in \({\mathbb{R}}^N\). Nonlinear Anal. RWA 12, 1278–1287 (2011)

    MATH  Google Scholar 

  54. Xie, Q., Ma, S., Zhang, X.: Positive ground state solutions for some non-autonomous Kirchhoff type problems. Rocky Mt. J. Math. 47, 329–350 (2017)

    MathSciNet  MATH  Google Scholar 

  55. Zhang, Z., Perera, K.: Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow. J. Math. Anal. Appl. 317, 456–463 (2006)

    MathSciNet  MATH  Google Scholar 

  56. Zou, W.: Sign-Changing Critical Points Theory. Springer, New York (2008)

    MATH  Google Scholar 

Download references

Acknowledgements

Z. Liu was partially supported by the NSFC (Grant No. 11701267), and Hunan Natural Science Excellent Youth Fund (2020JJ3029), and the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan, Grant number: CUG2106211; CUGST2). J. Zhang is the corresponding author and was supported by the NSFC (Grant No. 11871123).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Lou, Y. & Zhang, J. A perturbation approach to studying sign-changing solutions of Kirchhoff equations with a general nonlinearity. Annali di Matematica 201, 1229–1255 (2022). https://doi.org/10.1007/s10231-021-01155-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10231-021-01155-w

Keywords

Mathematics Subject Classification

Navigation