Skip to main content
Log in

Leray–Hirsch theorem and blow-up formula for Dolbeault cohomology

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

We prove a theorem of Leray–Hirsch type and give an explicit blow-up formula for Dolbeault cohomology on (not necessarily compact) complex manifolds. We give applications to strongly q-complete manifolds and the \(\partial \bar{\partial }\)-lemma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Angella, D.: Bott–Chern cohomology of solvmanifolds. Ann. Global Anal. Geom. 52, 363–411 (2017)

    Article  MathSciNet  Google Scholar 

  2. Angella, D., Kasuya, H.: Cohomologies of deformations of solvmanifolds and closedness of some properties. North-West Eur. J. Math. 3, 75–105 (2017)

    MathSciNet  MATH  Google Scholar 

  3. Angella, D., Suwa, T., Tardini, N., Tomassini, A.: Note on Dolbeault cohomology and Hodge structures up to bimeromorphisms. ArXiv: 1712.08889v2. 25 March 2019

  4. Barbieri-Viale, L.: \(\cal{H}\)-cohomology versus algebraic cycles. Math. Nachr. 184, 5–57 (1997)

    Article  MathSciNet  Google Scholar 

  5. Barth, W., Hulek, K., Peters, C., Van de Ven, A.: Compact complex surfaces. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 4, Second edn. Springer, Berlin (2004)

    Google Scholar 

  6. Banica, C., Stanasila, O.: Algebraic Methods in the Global Theory of Complex Spaces. Wiley, London (1976)

  7. Cordero, L.A., Fernandez, M., Gray, A., Ugarte, L.: Compact nilmanifolds with nilpotent complex structures: dolbeault cohomology. Trans. Am. Math. Soc. 352, 5405–5433 (2000)

    Article  MathSciNet  Google Scholar 

  8. Demailly, J.-P.: Complex analytic and differential geometry. http://www-fourier.ujf-grenoble.fr/~demailly/documents.html

  9. Deligne, P., Griffiths, Ph, Morgan, J., Sullivan, D.: Real homotopy theory of Kähler manifolds. Invent. Math. 29(3), 245–274 (1975)

    Article  MathSciNet  Google Scholar 

  10. Forstnerič, F.: Stein Manifolds and Holomorphic Mappings. The Homotopy Principle in Complex Analysis. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 56, Second edn. Springer, Heidelberg (2017)

    Google Scholar 

  11. Grivaux, J.: Chern classes in Deligne cohomology for coherent analytic sheaves. Math. Ann. 347, 249–284 (2010)

    Article  MathSciNet  Google Scholar 

  12. Gros, M.: Classes de Chern et classes de cycles en cohomologie de Hodge-Witt logarithmique. Mém. Soc. Math. France (N.S.) 21, 87 (1985)

    MathSciNet  MATH  Google Scholar 

  13. Griffiths, P.H., Harris, J.: Principle of Algebraic Geometry. Reprint of the 1978 Original. Wiley Classics Library. Wiley, New York (1994)

    Google Scholar 

  14. Greub, W., Halperin, S., Vanstone, R.: Connections, Curvature, and Cohomology, vol. I. Academic Press, New York (1972)

    MATH  Google Scholar 

  15. Guillén, F., Navarro Aznar, V.: Un critère d’extension des fonceurs définis sur les schémas lisses. Publ. Math. Inst. Hautes Études Sci. 95, 1–91 (2002)

    Article  Google Scholar 

  16. Grauert, H., Peternell, T., Remmert, R.: Several Complex Variables VII: Sheaf-Theoretical Methods in Complex Analysis. Encyclopaedia Mathematical Sciences. Springer, Berlin (1994)

    Book  Google Scholar 

  17. Hu, W.: Birational invariants defined by Lawson homology. Mich. Math. J. 60, 331–354 (2011)

    Article  MathSciNet  Google Scholar 

  18. Kasuya, H.: Hodge symmetry and decomposition on non-Kähler solvmanifolds. J. Geom. Phys. 76, 61–65 (2014)

    Article  MathSciNet  Google Scholar 

  19. Lewis, J.: A Survey of the Hodge Conjecture. CRM Monograph Series, Second edn. The American Mathematical Society, Providence (1999)

    Google Scholar 

  20. Manin, Yu.: Correspondences, motifs and monoidal transformations. Math. USSR Sbornik 6, 439–470 (1968)

    Article  Google Scholar 

  21. Meng, L.: Morse–Novikov cohomology for blow-ups of complex manifolds. ArXiv:1806.06622v4. 19 Oct 2019

  22. Meng, L.: An explicit blow-up formula for Dolbeault cohomology. ArXiv:1806.06622v2. 21 Aug 2018

  23. Meng, L.: Morse–Novikov cohomology on complex manifolds. J. Geom. Anal. 30(1), 493–510 (2020)

    Article  MathSciNet  Google Scholar 

  24. Meng, L.: Mayer–Vietoris systems and their applications. ArXiv:1811.10500v3. 17 April 2019

  25. Meng, L.: The heredity and bimeromorphic invariance of the \(\partial \bar{\partial }\)-lemma property. ArXiv:1904.08561v2. 24 April 2019

  26. Meng, L.: Three theorems on the \(\partial \bar{\partial }\)-lemma. ArXiv:1905.13585v1. 31 May 2019

  27. Nie, Z.: Blow-up formulas and smooth birational invariants. Proc. Am. Math. Soc. 137(8), 2529–2539 (2009)

    Article  MathSciNet  Google Scholar 

  28. Rao, S., Yang, S., Yang, X.-D.: Dolbeault cohomologies of blowing up complex manifolds. J. Math. Pures Appl. (9) 130, 68–92 (2019)

    Article  MathSciNet  Google Scholar 

  29. Rao, S., Yang, S., Yang, X.-D.: Dolbeault cohomologies of blowing up complex manifolds II: bundle-valued case. J. Math. Pures Appl. 9(133), 1–38 (2020)

    Article  MathSciNet  Google Scholar 

  30. Stelzig, J.: Double complexes and Hodge structures as vector bundles. PhD thesis, WWU, Münster (2018). https://d-nb.info/1165650959/34

  31. Stelzig, J.: The double complex of a blow-up. To appear in The International Mathematics Research Notices IMRN. https://doi.org/10.1093/imrn/rnz139; ArXiv:1808.02882v2. 3 June 2019

  32. Stelzig, J.: On the structure of double complexes. ArXiv:1812.00865v1. 3 Dec 2018

  33. Ueno, K.: Classification Theory of Algebraic Varieties and Compact Complex Spaces. Lecture Notes in Mathematics, vol. 439. Springer, Berlin (1975)

    Book  Google Scholar 

  34. Varouchas, J.: Sur l’image d’une variété Kählérienne compacte. A partaître dans Séminaire F. Norguet. Lecture Notes in Mathematics, vol. 1188. Springer, Berlin (1986)

    Google Scholar 

  35. Voisin, C.: Hodge Theory and Complex Algebraic Geometry. Cambridge Studies in Advanced Mathematics, vol. 76, 77, I, II edn. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  36. Wells, R.O.: Comparison of de Rham and Dolbeault cohomology for proper surjective mappings. Pac. J. Math. 53, 281–300 (1974)

    Article  MathSciNet  Google Scholar 

  37. Yang, S., Yang, X.-D.: Bott-Chern blow-up formula and bimeromorphic invariance of the \(\partial \bar{\partial }\)-Lemma for threefolds. ArXiv:1712.08901v3. 22 Sept 2018

  38. Yang, X.-D., Zhao, G.: A note on the Morse–Novikov cohomology of blow-ups of locally conformal Kähler manifolds. Bull. Aust. Math. Soc. 91, 155–166 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to express my gratitude to Prof. Fu, Jixiang for his encouragement and support and thank School of Mathematical Science of Fudan University for the hospitality during my visit. In particular, I would like to thank Prof. Rao, Sheng and Dr. Yang, Xiang-Dong for many useful discussions and sending me the newest versions of their articles [28, 29, 37]. I would like to thank the referee for valuable suggestions and careful reading of my manuscript.

Funding

The author is supported by the Natural Science Foundation of Shanxi Province of China (Grant No. 201901D111141).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingxu Meng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, L. Leray–Hirsch theorem and blow-up formula for Dolbeault cohomology. Annali di Matematica 199, 1997–2014 (2020). https://doi.org/10.1007/s10231-020-00953-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10231-020-00953-y

Keywords

Mathematics Subject Classification

Navigation