Skip to main content
Log in

Morse-Novikov Cohomology on Complex Manifolds

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We view Dolbeault–Morse–Novikov cohomology \(H^{p,q}_\eta (X)\) as the cohomology of the sheaf \(\Omega _{X,\eta }^p\) of \(\eta \)-holomorphic p-forms and give several bimeromorphic invariants. Analogue to Dolbeault cohomology, we establish the Leray–Hirsch theorem and the blow-up formula for Dolbeault–Morse–Novikov cohomology. At last, we consider the relations between Morse–Novikov cohomology and Dolbeault–Morse–Novikov cohomology, moreover, investigate stabilities of their dimensions under the deformations of complex structures. In some aspects, Morse–Novikov and Dolbeault–Morse–Novikov cohomology behave similarly with de Rham and Dolbeault cohomology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alessandrini, L., Bassanelli, G.: Compact p-Kähler manifolds. Geom. Dedic. 38, 199–210 (1991)

    Article  Google Scholar 

  2. Banyaga, A.: Some properties of locally conformal symplectic structures. Comment. Math. Helv. 77(2), 383–398 (2002)

    Article  MathSciNet  Google Scholar 

  3. Banyaga, A.: Examples of non \(d_\omega \)-exact locally conformal symplectic forms. J. Geom. 87, 1–13 (2007)

    Article  MathSciNet  Google Scholar 

  4. Bande, G., Kotschick, D.: Moser stability for locally conformally symplectic structures. Proc. Am. Math. Soc. 137(7), 2419–2424 (2009)

    Article  MathSciNet  Google Scholar 

  5. Belgun, F.A.: On the metric structure of non-Kähler complex surfaces. Math. Ann. 317, 1–40 (2000)

    Article  MathSciNet  Google Scholar 

  6. Demailly, J.-P.: Complex Analytic and Differential Geometry, http://www-fourier.ujf-grenoble.fr/~demailly/documents.html

  7. Greub, W., Halperin, S., Vanstone, R.: Connections, Curvature, and Cohomology, vol. I. Academic Press, New York (1972)

    MATH  Google Scholar 

  8. Grauert, H., Remmert, R.: Theory of Stein Spaces. Classics in Mathematics. Springer, Berlin (1979)

    Book  Google Scholar 

  9. Grauert, H., Remmert, R.: Coherent Analytic Sheaves. Grundlehren der Mathematischen Wissenschaften, vol. 265. Springer, Berlin (1984)

    Book  Google Scholar 

  10. Haller, S., Rybicki, T.: On the group of diffeomorphisms preserving a locally conformal symplectic structure. Ann. Glob. Anal. Geom. 17, 475–502 (1999)

    Article  MathSciNet  Google Scholar 

  11. Iversen, B.: Cohomology of Sheaves. Universitext, Springer, Berlin (1986)

    Book  Google Scholar 

  12. León, M., López, B., Marrero, J.C., Padrón, E.: On the computation of the Lichnerowicz–Jacobi cohomology. J. Geom. Phys. 44, 507–522 (2003)

    Article  MathSciNet  Google Scholar 

  13. Lichnerowicz, A.: Les variétés de Poisson et leurs algébres de Lie associées. J. Differ. Geom. 12(2), 253–300 (1977)

    Article  MathSciNet  Google Scholar 

  14. Meng, L.: Morse–Novikov cohomology for blow-ups of complex manifolds. arXiv:1806.06622v3 (22 October, 2018)

  15. Meng, L.: An explicit formula of blow-ups for Dolbeault cohomology. arXiv:1806.11435v4 (12 October, 2018)

  16. Novikov, S.P.: The Hamiltonian formalism and a multivalued analogue of Morse theory (Russian). Uspekhi Mat. Nauk. 37, 3–43 (1982); English translation, Russian Math. Surveys 37(5), 1–56 (1982)

  17. Ornea, L., Verbitsky, M.: Morse–Novikov cohomology of locally conformally Kähler manifolds. J. Geom. Phys. 59, 295–305 (2009)

    Article  MathSciNet  Google Scholar 

  18. Ornea, L., Verbitsky, M.: Locally conformal Kähler manifolds with potential. Math. Ann. 348, 25–33 (2010)

    Article  MathSciNet  Google Scholar 

  19. Ornea, L., Verbitsky, M., Vuletescu, V.: Blow-ups of locally conformally Kähler manifolds. Int. Math. Res. Not. 12, 2809–2821 (2013)

    Article  Google Scholar 

  20. Ornea, L., Verbitsky, M., Vuletescu, V.: Weighted Bott–Chern and Dolbeault cohomology for LCK-manifolds with potential. J. Math. Soc. Jpn. 70(1), 409–422 (2018)

    Article  MathSciNet  Google Scholar 

  21. Pajitnov, A.: An analytic proof of the real part of the Novikov inequalities (in Russian). Dokl. Akad. Nauk SSSR 293(6), 1305–1307 (1987); English translation, Soviet Math. Dokl. 35(2), 456–457 (1987)

  22. Pajitnov, A.: Circle-valued Morse Theory. De Gruyter Studies in Mathematics, vol. 32. Walter de Gruyter, Berlin (2006)

    Book  Google Scholar 

  23. Rao, S., Yang, S., Yang, X.-D.: Dolbeault cohomologies of blowing up complex manifolds. arXiv:1712.06749v4. 23 August, : to appear in J. Math. Pures Appl. (2018)

  24. Sullivan, D.: Infinitesimal computations in topology. Publ. Math. Inst. Hautes Études Sci. 47, 269–331 (1977)

    Article  MathSciNet  Google Scholar 

  25. Ueno, K.: Classification Theory of Algebraic Varieties and Compact Complex Spaces. Lecture Notes in Mathematics, vol. 439. Springer, Berlin (1975)

    Book  Google Scholar 

  26. Vaisman, I.: Remarkable operators and commutation formulas on locally conformal Kähler manifolds. Compos. Math. 40(3), 287–299 (1980)

    MATH  Google Scholar 

  27. Voisin, C.: Hodge Theory and Complex Algebraic Geometry. Cambridge Studies in Advanced Mathematics, vol. 76. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  28. Wells, R.O.: Comparison of de Rham and Dolbeault cohomology for proper surjective mappings. Pac. J. Math. 53, 281–300 (1974)

    Article  MathSciNet  Google Scholar 

  29. Yang, X., Zhao, G.: A note on the Morse–Novikov cohomology of blow-ups of locally conformal Kähler manifolds. Bull. Aust. Math. Soc. 91, 155–166 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to express my gratitude to referees for their helpful suggestions and careful reading of my manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingxu Meng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, L. Morse-Novikov Cohomology on Complex Manifolds. J Geom Anal 30, 493–510 (2020). https://doi.org/10.1007/s12220-019-00155-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-019-00155-w

Keywords

Mathematics Subject Classification

Navigation