Skip to main content
Log in

Abstract

We present an algorithm that, given an irreducible polynomial g over a general valued field (Kv), finds the factorization of g over the Henselianization of K under certain conditions. The analysis leading to the algorithm follows the footsteps of Ore, Mac Lane, Okutsu, Montes, Vaquié and Herrera–Olalla–Mahboub–Spivakovsky, whose work we review in our context. The correctness is based on a key new result (Theorem 4.10), exhibiting relations between generalized Newton polygons and factorization in the context of an arbitrary valuation. This allows us to develop a polynomial factorization algorithm and an irreducibility test that go beyond the classical discrete, rank-one case. These foundational results may find applications for various computational tasks involved in arithmetic of function fields, desingularization of hypersurfaces, multivariate Puiseux series or valuation theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Algorithm 1
Fig. 6
Algorithm 2
Fig. 7
Algorithm 3

Similar content being viewed by others

References

  1. S.S. Abhyankar, Coverings of algebraic curves, Amer. J. Math. 79 (1957), 825–856.

    Article  MathSciNet  Google Scholar 

  2. S.S. Abhyankar, Irreducibility criterion for germs of analytic functions of two complex variables, Adv. Math. 35 (1989), 190–257.

    Article  MathSciNet  Google Scholar 

  3. S.S. Abhyankar, T. Moh, Newton-Puiseux Expansion and Generalized Tschirnhausen Transformation, J. Reine Angew. Math. 260 (1973), 47–83.

    MathSciNet  Google Scholar 

  4. M. Alberich-Carrami\(\tilde{\text{n}}\)ana, J. Guàrdia, E. Nart, J. Roé, Valuative trees of valued fields, J. Algebra 614 (2023), 71–114.

  5. M. dos Santos Barnabé, J. Novacoski, Valuations on \({K[x]}\) approaching a fixed irreducible polynomial, J. Algebra 592 (2022), 100–117.

  6. J.-D. Bauch, Computation of integral bases, J. Number Theory 165 (2016), 382–407.

    Article  MathSciNet  Google Scholar 

  7. J.-D. Bauch, E. Nart, H. Stainsby, Complexity of the OM factorizations of polynomials over local fields, LMS J. of Comp. and Math. 16 (2013), 139–171.

    Article  MathSciNet  Google Scholar 

  8. D. Duval, Rational Puiseux expansions, Compositio Math. 70 (1989), no.2, 119–154.

    MathSciNet  Google Scholar 

  9. O. Endler, Valuation Theory, Universitex, Springer-Verlag, Berlin Heidelberg, 1972.

  10. J.v.z. Gathen, G. Jürgen, Modern Computer Algebra, Cambridge University Press, 2013.

  11. A. Jakhar, S. K. Khanduja, N. Sangwan, On factorization of polynomials in Henselian valued fields, Comm. Alg. 46-7 (2018), 3205–3221.

    Article  MathSciNet  Google Scholar 

  12. J. Guàrdia, J. Montes, E. Nart, Okutsu invariants and Newton polygons, Acta Arith. 145 (2010), 83–108.

    Article  MathSciNet  Google Scholar 

  13. J. Guàrdia, J. Montes, E. Nart, Higher Newton polygons in the computation of discriminants and prime ideal decomposition in number fields, J. Théor. Nombres Bordeaux 23 (2011), no. 3, 667–696.

    Article  MathSciNet  Google Scholar 

  14. J. Guàrdia, J. Montes, E. Nart, Newton polygons of higher order in algebraic number theory, Trans. Amer. Math. Soc. 364 (2012), no. 1, 361–416.

    Article  MathSciNet  Google Scholar 

  15. J. Guàrdia, J. Montes, E. Nart, A new computational approach to ideal theory in number fields, Found. Comput. Math. 13 (2013), 729–762.

    Article  MathSciNet  Google Scholar 

  16. J. Guàrdia, J. Montes, E. Nart, Higher Newton polygons and integral bases, J. Number Theory 147 (2015), 549–589.

    Article  MathSciNet  Google Scholar 

  17. J. Guàrdia, E. Nart, Genetics of polynomials over local fields, in Arithmetic, geometry, and coding theory, Contemp. Math. vol. 637 (2015), 207-241.

    Article  Google Scholar 

  18. F.J. Herrera Govantes, M.A. Olalla Acosta, M. Spivakovsky, Valuations in algebraic field extensions, J. Algebra 312 (2007), no. 2, 1033–1074.

  19. F.J. Herrera Govantes, W. Mahboub, M.A. Olalla Acosta, M. Spivakovsky, Key polynomials for simple extensions of valued fields, J. Singul. 25 (2022), 197–267.

  20. F.-V. Kuhlmann, Value groups, residue fields, and bad places of rational function fields, Trans. Amer. Math. Soc. 356 (2004), no. 11, 4559–4660.

    Article  MathSciNet  Google Scholar 

  21. J. Mac Donald, Fiber polytopes and fractional power series, J. of Pure and App. Alg. 104 (1995), no. 2, 213–233.

  22. S. Mac Lane, A construction for absolute values in polynomial rings, Trans. Amer. Math. Soc. 40 (1936), 363–395.

  23. S. Mac Lane, A construction for prime ideals as absolute values of an algebraic field, Duke Math. J. 2 (1936), 492–510.

  24. J. Montes, Polígonos de Newton de orden superior y aplicaciones aritméticas, PhD Thesis, Universitat de Barcelona, 1999.

  25. N. Moraes de Oliveira, E. Nart, Defectless polynomials over Henselian fields and inductive valuations, J. Algebra, 541 (2020), 270–307.

    Article  MathSciNet  Google Scholar 

  26. N. Moraes de Oliveira, E. Nart, Computation of residual polynomial operators of inductive valuations, J. Pure Appl. Algebra 225-9 (2021), 106668.

    Article  MathSciNet  Google Scholar 

  27. E. Nart, Key polynomials over valued fields, Publ. Mat. 64 (2020), 195–232.

    Article  MathSciNet  Google Scholar 

  28. E. Nart, Mac Lane-Vaquié chains of valuations on a polynomial ring, Pacific J. Math. 311-1 (2021), 165–195.

    Article  Google Scholar 

  29. E. Nart, Rigidity of valuative trees under Henselization, Pacific J. Math. 319 (2022), 189–211.

    Article  MathSciNet  Google Scholar 

  30. E. Nart, J. Novacoski, The defect formula, Adv. Math. 428 (2023), 109153.

    Article  MathSciNet  Google Scholar 

  31. J. Neukirch, Algebraische Zahlentheorie, Springer-Verlag, Berlin Heidelberg 1992.

    Book  Google Scholar 

  32. J. Novacoski, On Mac Lane-Vaquié key polynomials, J. Pure Appl. Algebra 225 (2021), 106644.

    Article  MathSciNet  Google Scholar 

  33. J. Novacoski and M. Spivakovsky, Reduction of local uniformization to the rank one case, Valuation Theory in Interaction, EMS Series of Congress Reports, Eur. Math. Soc. (2014) 404–431.

  34. J. Novacoski, M. Spivakovsky, On the local uniformization problem, Banach Center Publ. 108 (2016), 231–238.

    Article  MathSciNet  Google Scholar 

  35. K. Okutsu, Construction of integral basis I, II, Proc. Japan Acad. Ser. A 58 (1982), 47–49, 87–89.

    MathSciNet  ADS  Google Scholar 

  36. Ø. Ore, Zur Theorie der algebraischen Körper, Acta Math. 44 (1923), 219–314.

    Article  MathSciNet  Google Scholar 

  37. Ø. Ore, Newtonsche Polygone in der Theorie der algebraischen Körper, Math. Ann. 99 (1928), 84–117.

    Article  MathSciNet  Google Scholar 

  38. P. Popescu-Pampu, Approximate roots, Fields Inst. Comm. 33 (2002), 1–37.

    MathSciNet  Google Scholar 

  39. A. Poteaux and M. Weimann, Computing Puiseux series: a fast divide and conquer algorithm, Ann. Henri Leb. 4 (2021), 1061–1102.

    Article  MathSciNet  Google Scholar 

  40. A. Poteaux, M. Weimann, A quasi-linear irreducibility test in \(\mathbb{K} [[x]][y]\), Comput. Complexity 31 (2022), no. 6, 1–52.

    MathSciNet  Google Scholar 

  41. A. Poteaux, M. Weimann, Local polynomial factorisation: improving the Montes algorithm, Proceedings of the 2022 ACM on International Symposium on Symbolic and Algebraic Computation ISSAC’22 (2022), 149–158.

  42. H. D. Stainsby, Triangular bases of integral closures, J. Symb. Comp. 87 (2018) 140–175.

    Article  MathSciNet  Google Scholar 

  43. M. Vaquié, Famille admise associée à une valuation de \({K[x]}\), Singularités Franco-Japonaises, Séminaires et Congrés 10, SMF, Paris (2005), Actes du colloque franco-japonais, juillet 2002, édité par Jean-Paul Brasselet et Tatsuo Suwa, 391–428.

  44. M. Vaquié, Extension d’une valuation, Trans. Amer. Math. Soc. 359 (2007), no. 7, 3439–3481.

    Article  MathSciNet  Google Scholar 

  45. M. Vaquié, Famille admissible de valuations et défaut d’une extension, J. Algebra 311 (2007), no. 2, 859–876.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We warmly thank the referees, whose enlightening comments led us to improve the presentation, and Josnei Novacoski for sharing his insights about the content of Sect. 4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Weimann.

Additional information

Communicated by Christophe Ritzenthaler.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Partially supported by Grants PID2019-103849GB-I00, PID2020-116542GB-I00, PID2022-136944NB-I00 funded by MCIN/AEI/10.13039/501100011033 and by grants 2021-SGR-00603, 2021-SGR-01468 funded by Generalitat de Catalunya

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alberich-Carramiñana, M., Guàrdia, J., Nart, E. et al. Polynomial Factorization Over Henselian Fields. Found Comput Math (2024). https://doi.org/10.1007/s10208-024-09646-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10208-024-09646-x

Keywords

Mathematics Subject Classification

Navigation