Skip to main content
Log in

Convex Analysis on Hadamard Spaces and Scaling Problems

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we address the bounded/unbounded determination of geodesically convex optimization on Hadamard spaces. In Euclidean convex optimization, the recession function is a basic tool to study the unboundedness and provides the domain of the Legendre–Fenchel conjugate of the objective function. In a Hadamard space, the asymptotic slope function (Kapovich et al. in J Differ Geom 81:297–354, 2009), which is a function on the boundary at infinity, plays a role of the recession function. We extend this notion by means of convex analysis and optimization and develop a convex analysis foundation for the unbounded determination of geodesically convex optimization on Hadamard spaces, particularly on symmetric spaces of nonpositive curvature. We explain how our developed theory is applied to operator scaling and related optimization on group orbits, which are our motivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. To see the consistency with his formulation, use the relation \(b_{\lambda \cdot \mathcal{E}}(gg^{\dagger }) = - \log \det (\mathop {\textrm{diag}}\lambda , g^{\dagger }g)\) for any upper triangular matrix g, where \(\det (\mathop {\textrm{diag}}\lambda , g^{\dagger }g)\) is the relative determinant in the sense of [19].

  2. From \(\frac{\textrm{d}}{{\textrm{d}}t} \mid _{t=0} \langle \pi (e^{tH_0})u, \pi (e^{tH_0})v\rangle =0\) for \(H_0 \in \mathfrak {u}\), we have \(\langle \Pi (H_0)u,v\rangle + \langle u, \Pi (H_0)v\rangle =0\). Thus, \(\Pi (H_0)^{\dagger } = - \Pi (H_0)\). For \(H = H_0+i H_1\) with \(H_0,H_1 \in \mathfrak {u}\), we have \(\Pi (H)^\dagger = \Pi (H_0)^{\dagger } - i \Pi (H_1)^{\dagger } = - \Pi (H_0) + i \Pi (H_1) = \Pi (-H_0+ i H_1) = \Pi (H^{\dagger })\).

  3. By \(\pi (k^{\dagger }) = \pi (k^{-1}) = \pi (k)^{-1} = \pi (k)^\dagger \) for \(k \in K\) and polar decomposition \(g= k e^{iH}\) for \(k \in K\) and \(H \in \mathfrak {u}\), we have \(\pi (g^{\dagger }) = e^{- i \Pi (H^{\dagger })} \pi (k^{\dagger }) = e^{-i\Pi (H)^{\dagger }} \pi (k)^{\dagger } = (\pi (k)e^{i\Pi (H)})^{\dagger } = \pi (g)^{\dagger }\).

  4. This fact can be seen from Proposition 2.33 and the fact that the moment map \(\mu : \pi (G)v {\setminus } \{0\} \rightarrow i \mathfrak {u} (=T_I)\) in [15] is written as \(\mu (\pi (g)v) = g^\dagger df_v(gg^\dagger ) g\).

References

  1. P. Abramenko and K. S. Brown, Buildings—Theory and Applications. Springer, New York, 2008.

    Book  MATH  Google Scholar 

  2. Z. Allen-Zhu, A. Garg, Y. Li, R. Oliveira, and A. Wigderson, Operator scaling via geodesically convex optimization, invariant theory and polynomial identity testing. arXiv:1804.01076, 2018, the conference version in STOC 2018.

  3. S. Amari and K. Nagaoka, Methods of Information Geometry. American Mathematical Society, Providence, RI, 2000.

    MATH  Google Scholar 

  4. R. Bergmann, R. Herzog, M. S. Louzeiro, D. Tenbrinck, and J. Vidal-Núñez, Fenchel duality theory and a primal-dual algorithm on Riemannian Manifolds. Foundations of Computational Mathematics 2 (2021), 1465–1504, 2021.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Bačák, Convex Analysis and Optimization in Hadamard Spaces. De Gruyter, Berlin, 2014.

    Book  MATH  Google Scholar 

  6. W. Ballmann, Lectures on Spaces of Nonpositive Curvature. Birkhäuser Verlag, Basel, 1995.

    Book  MATH  Google Scholar 

  7. W. Ballmann, M. Gromov, and V. Schroeder, Manifolds of Nonpositive Curvature, Boston, MA, 1985.

    Book  MATH  Google Scholar 

  8. J. Bennett, A. Carbery, M. Christ, and T. Tao, The Brascamp–Lieb inequalities: finiteness, structure and extremals. Geometric and Functional Analysis 17 (2007) 1343–1415.

    Article  MathSciNet  MATH  Google Scholar 

  9. N. Boumal, An Introduction to Optimization on Smooth Manifolds. Cambridge University Press, Cambridge, 2023.

    Book  MATH  Google Scholar 

  10. H. Brascamp and E. Lieb, Best constants in Young’s inequality, its converse, and its generalization to more than three functions. Advances in Mathematics20 (1976), 151–173.

    Article  MathSciNet  MATH  Google Scholar 

  11. M. R. Bridson and A. Haefliger, Metric Spaces of Non-positive Curvature. Springer-Verlag, Berlin, 1999.

    Book  MATH  Google Scholar 

  12. M. Brion, Sur l’image de l’application moment. In: M. -P. Malliavin (eds): Séminaire d’algèbre Paul Dubreil et Marie-Paule Malliavin (Paris, 1986), Lecture Notes in Mathematics 1296, Springer, Berlin (1987), pp 177–192.

    Chapter  Google Scholar 

  13. P. Bürgisser, A. Garg, R. Oliveira, M. Walter, and A. Wigderson, Alternating minimization, scaling algorithms, and the null-cone problem from invariant theory, arXiv:1711.08039, 2017, the conference version in ITCS 2018.

  14. P. Bürgisser, C. Franks, A. Garg, R. Oliveira, M. Walter, and A. Wigderson, Efficient algorithms for tensor scaling, quantum marginals and moment polytopes. arXiv:1804.04739, 2018, the conference version in FOCS 2018.

  15. P. Bürgisser, C. Franks, A. Garg, R. Oliveira, M. Walter, and A. Wigderson, Towards a theory of non-commutative optimization: geodesic first and second order methods for moment maps and polytopes. arXiv:1910.12375, 2019, the conference version in FOCS 2019.

  16. D. A. Cox, J. Little, D. O’Shea, Ideals, Varieties, and Algorithms, 4th edition, Springer, Cham, 2015.

    Book  MATH  Google Scholar 

  17. P. B. Eberlein, Geometry of Nonpositively Curved Manifolds. University of Chicago Press, Chicago, IL, 1996.

    MATH  Google Scholar 

  18. M. Fortin and C. Reutenauer, Commutative/non-commutative rank of linear matrices and subspaces of matrices of low rank. Séminaire Lotharingien de Combinatoire 52 (2004), B52f.

    MATH  Google Scholar 

  19. C. Franks, Operator scaling with specified marginals. arXiv:1801.01412, 2018, the conference version in STOC 2018.

  20. C. Franks, T. Soma, and M. X. Goemans, Shrunk subspaces via operator Sinkhorn iteration. arXiv:2207.08311, 2022, the conference version in SODA 2023.

  21. S. Fujishige, Submodular Functions and Optimization, 2nd Edition. Elsevier, Amsterdam, 2005.

    MATH  Google Scholar 

  22. A. Garg, L. Gurvits, R. Oliveira, and A. Wigderson, Operator scaling: theory and applications. Foundations of Computational Mathematics 20 (2020), 223–290.

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Garg, L. Gurvits, R. Oliveira, and A. Wigderson, Algorithmic and optimization aspects of Brascamp–Lieb inequalities, via Operator Scaling. Geometric and Functional Analysis 28 (2018) 100–145.

    Article  MathSciNet  MATH  Google Scholar 

  24. V. Guillemin and S. Sternberg, Convexity properties of the moment mapping, Inventiones Mathematicae 67 (1982) 491–513.

    Article  MathSciNet  MATH  Google Scholar 

  25. L. Gurvits, Classical complexity and quantum entanglement, Journal of Computer and System Sciences 69 (2004), 448–484.

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Hamada and H. Hirai, Computing the nc-rank via discrete convex optimization on CAT(0) spaces, SIAM Journal on Applied Geometry and Algebra 5 (2021), 455–478.

    Article  MathSciNet  MATH  Google Scholar 

  27. H. Hirai, L-convexity on graph structures. Journal of the Operations Research Society of Japan 61 (2018), 71–109.

    Article  MathSciNet  MATH  Google Scholar 

  28. H. Hirai, H. Nieuwboer, and M. Walter, Interior-point methods on manifolds: theory and applications, arXiv:2303.04771, 2023, the conference version in FOCS 2023.

  29. J.-B. Hiriart-Urruty and C. Lemaréchal, Fundamentals of Convex Analysis. Springer-Verlag, Berlin, 2001.

    Book  MATH  Google Scholar 

  30. G. Ivanyos, Y. Qiao, and K. V. Subrahmanyam, Non-commutative Edmonds’ problem and matrix semi-invariants. Computational Complexity 26 (2017), 717–763.

    Article  MathSciNet  MATH  Google Scholar 

  31. M. Kapovich, B. Leeb, and J. Millson, Convex functions on symmetric spaces, side lengths of polygons and the stability inequalities for weighted configurations at infinity. Journal of Differential Geometry 81 (2009), 297–354.

    Article  MathSciNet  MATH  Google Scholar 

  32. G. Kempf and L. Ness, The length of vectors in representation spaces, In K. Lønsted (ed.) Algebraic Geometry (Summer Meeting, Copenhagen, August 7–12, 1978), Lecture Notes in Mathematics 732, Springer, Berlin, 1979, pp. 233–243.

    Chapter  Google Scholar 

  33. B. Kleiner and B. Leeb, Rigidity of invariant convex sets in symmetric spaces. Inventiones Mathematicae 163 (2006), 657–676.

    Article  MathSciNet  MATH  Google Scholar 

  34. A. W. Knapp, Lie Groups Beyond an Introduction, Second Edition, Birkhäuser, Boston, 2002.

    MATH  Google Scholar 

  35. E. Lieb, Gaussian kernels have only Gaussian maximizers. Inventions Mathematicae 102 (1990), 179–208.

    Article  MathSciNet  MATH  Google Scholar 

  36. M. S. Louzeiro, R. Bergmann, and R. Herzog, Fenchel duality and a separation theorem on Hadamard manifolds. SIAM Journal on Optimization 32 (2022), 854–873.

    Article  MathSciNet  MATH  Google Scholar 

  37. L. Lovász, Submodular functions and convexity. In A. Bachem, M. Grötschel, and B. Korte (eds.): Mathematical Programming—The State of the Art. Springer-Verlag, Berlin, 1983, pp. 235–257.

    Chapter  Google Scholar 

  38. K. Murota, Discrete Convex Analysis. SIAM, Philadelphia, 2004.

    MATH  Google Scholar 

  39. L. Ness and D. Mumford, A stratification of the null cone via the moment map. American Journal of Mathematics 106 (1984), 1281–1329.

    Article  MathSciNet  MATH  Google Scholar 

  40. R. T. Rockafellar, Convex Analysis, Princeton University Press, New Jersey, 1970.

    Book  MATH  Google Scholar 

  41. U. G. Rothblum and H. Schneider, Scalings of matrices which have prespecified row sums and column sums via optimization. Linear Algebra and Its Applications 114/115 (1989), 737–764.

    Article  MathSciNet  MATH  Google Scholar 

  42. T. Sakai, Riemannian Geometry, American Mathematical Society, Providence, RI, 1996.

    Book  MATH  Google Scholar 

  43. A. Schrijver, Combinatorial Optimization—Polyhedra and Efficiency. Springer, Berlin, 2003.

    MATH  Google Scholar 

  44. R. Sinkhorn, A relationship between arbitrary positive matrices and doubly stochastic matrices. Annals of Mathematics Statistics 35 (1964), 876–879.

    Article  MathSciNet  MATH  Google Scholar 

  45. N. R. Wallach, Geometric Invariant Theory. Springer, Cham, 2017.

    Book  MATH  Google Scholar 

  46. C. Woodward, Moment maps and geometric invariant theory, arXiv:0912.1132, 2009.

Download references

Acknowledgements

The author thanks Hiroyuki Ochiai for helpful discussion and thanks for Zhiyuan Zhan for corrections. The author also thanks Harold Nieuwboer and Michael Walter for discussion on the Legendre–Fenchel duality. The work was partially supported by JST PRESTO Grant No. JPMJPR192A, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Hirai.

Additional information

Communicated by Peter Bürgisser.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirai, H. Convex Analysis on Hadamard Spaces and Scaling Problems. Found Comput Math (2023). https://doi.org/10.1007/s10208-023-09628-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10208-023-09628-5

Keywords

Mathematics Subject Classification

Navigation