Skip to main content
Log in

A New Approach to the Analysis of Parametric Finite Element Approximations to Mean Curvature Flow

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

Parametric finite element methods have achieved great success in approximating the evolution of surfaces under various different geometric flows, including mean curvature flow, Willmore flow, surface diffusion, and so on. However, the convergence of Dziuk’s parametric finite element method, as well as many other widely used parametric finite element methods for these geometric flows, remains open. In this article, we introduce a new approach and a corresponding new framework for the analysis of parametric finite element approximations to surface evolution under geometric flows, by estimating the projected distance from the numerically computed surface to the exact surface, rather than estimating the distance between particle trajectories of the two surfaces as in the currently available numerical analyses. The new framework can recover some hidden geometric structures in geometric flows, such as the full \(H^1\) parabolicity in mean curvature flow, which is used to prove the convergence of Dziuk’s parametric finite element method with finite elements of degree \(k \ge 3\) for surfaces in the three-dimensional space. The new framework introduced in this article also provides a foundational mathematical tool for analyzing other geometric flows and other parametric finite element methods with artificial tangential motions to improve the mesh quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. G. Bai and B. Li. Erratum: Convergence of Dziuk’s semidiscrete finite element method for mean curvature flow of closed surfaces with high-order finite elements. SIAM J. Numer. Anal., 61(3):1609–1612, 2023.

    Article  MathSciNet  MATH  Google Scholar 

  2. E. Bänsch, P. Morin, and R. H. Nochetto. A finite element method for surface diffusion: The parametric case. J. Comput. Phys., 203:321–343, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  3. W. Bao, W. Jiang, Y. Wang, and Q. Zhao. A parametric finite element method for solid-state dewetting problems with anisotropic surface energies. J. Comput. Phys., 330:380–400, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  4. W. Bao, W. Jiang, and Q. Zhao. A parametric finite element method for solid-state dewetting problems in three dimensions. SIAM J. Sci. Comput., 42:B327–B352, 2020.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Barrett, K. Deckelnick, and R. Nürnberg. A finite element error analysis for axisymmetric mean curvature flow. IMA J. Numer. Anal., 41(3):1641–1667, 2021.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. W. Barrett, K. Deckelnick, and V. Styles. Numerical analysis for a system coupling curve evolution to reaction diffusion on the curve. SIAM J. Numer. Anal., 55(2):1080–1100, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. W. Barrett, H. Garcke, and R. Nürnberg. A parametric finite element method for fourth order geometric evolution equations. J. Comput. Phys., 222:441–467, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. W. Barrett, H. Garcke, and R. Nürnberg. On the parametric finite element approximation of evolving hypersurfaces in \(\mathbb{R}^3\). J. Comput. Phys., 227:4281–4307, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. W. Barrett, H. Garcke, and R. Nürnberg. Parametric approximation of willmore flow and related geometric evolution equations. SIAM Journal on Scientific Computing, 31(1):225–253, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. W. Barrett, H. Garcke, and R. Nürnberg. Parametric finite element approximations of curvature-driven interface evolutions. In Handbook of numerical analysis, volume 21, pages 275–423. Elsevier, 2020.

  11. S. Bartels. A simple scheme for the approximation of the elastic flow of inextensible curves. IMA J. Numer. Anal., 33:1115–1125, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Bartels, R. Müller, and C. Ortner. Robust a priori and a posteriori error analysis for the approximation of Allen–Cahn and Ginzburg–Landau equations past topological changes. SIAM J. Numer. Anal., 49:110–134, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  13. T. Binz and B. Kovács. A convergent finite element algorithm for generalized mean curvature flows of closed surfaces. IMA J. Numer. Anal., 42(3):2545–2588, 2021.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Bonito, R. H. Nochetto, and M. S. Pauletti. Parametric FEM for geometric biomembranes. J. Comput. Phys., 229:3171–3188, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  15. K. Deckelnick. Error bounds for a difference scheme approximating viscosity solutions of mean curvature flow. Interfaces Free Bound., 2:117–142, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  16. K. Deckelnick and G. Dziuk. Convergence of a finite element method for non-parametric mean curvature flow. Numer. Math., 72:197–222, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  17. K. Deckelnick and G. Dziuk. On the approximation of the curve shortening flow. In Calculus of variations, applications and computations (Pont-à-Mousson, 1994), volume 326 of Pitman Res. Notes Math. Ser., pages 100–108. Longman Sci. Tech., Harlow, 1995.

  18. K. Deckelnick and G. Dziuk. Error analysis of a finite element method for the Willmore flow of graphs. Interfaces Free Bound., 8:21–46, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  19. K. Deckelnick and G. Dziuk. Error analysis for the elastic flow of parametrized curves. Math. Comp., 78:645–671, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  20. K. Deckelnick and R. Nürnberg. Error analysis for a finite difference scheme for axisymmetric mean curvature flow of genus-0 surfaces. SIAM J. Numer. Anal., 59(5):2698–2721, 2021.

    Article  MathSciNet  MATH  Google Scholar 

  21. K. Deckelnick and V. Styles. Finite element error analysis for a system coupling surface evolution to diffusion on the surface. Interfaces Free Bound., 24:63–93, 2022.

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Demlow. Higher-order finite element methods and pointwise error estimates for elliptic problems on surfaces. SIAM J. Numer. Anal., 47(2):805–827, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  23. G. Dziuk. An algorithm for evolutionary surfaces. Numer. Math., 58:603–611, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  24. G. Dziuk. Convergence of a semi-discrete scheme for the curve shortening flow. Math. Models Methods Appl. Sci., 4:589–606, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  25. G. Dziuk. Computational parametric Willmore flow. Numer. Math., 111:55–80, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  26. G. Dziuk and C. M. Elliott. Finite elements on evolving surfaces. IMA J. Numer. Anal., 27:262–292, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  27. G. Dziuk and C. M. Elliott. A fully discrete evolving surface finite element method. SIAM J. Numer. Anal., 50:2677–2694, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  28. G. Dziuk, D. Kröner, and T. Müller. Scalar conservation laws on moving hypersurfaces. Interfaces Free Bound., 15(2):203–236, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  29. K. Ecker. Regularity theory for mean curvature flow. Springer, 2012.

  30. C. Elliott, H. Garcke, and B. Kovács. Numerical analysis for the interaction of mean curvature flow and diffusion on closed surfaces. Numer. Math., 151:873–925, 2022.

    Article  MathSciNet  MATH  Google Scholar 

  31. C. M. Elliott and H. Fritz. On approximations of the curve shortening flow and of the mean curvature flow based on the DeTurck trick. IMA J. Numer. Anal., 37:543–603, 2017.

    MathSciNet  MATH  Google Scholar 

  32. X. Feng and Y. Li. Analysis of symmetric interior penalty discontinuous Galerkin methods for the Allen–Cahn equation and the mean curvature flow. IMA J. Numer. Anal., 35:1622–1651, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  33. X. Feng and A. Prohl. Numerical analysis of the Allen–Cahn equation and approximation for mean curvature flows. Numer. Math., 94:33–65, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  34. D. Gilbarg and N. S. Trudinger. Elliptic partial differential equations of second order. Springer, Berlin, Germany, 2001.

    Book  MATH  Google Scholar 

  35. J. Hu and B. Li. Evolving finite element methods with an artificial tangential velocity for mean curvature flow and willmore flow. Numer. Math., 152:127–181, 2022.

    Article  MathSciNet  MATH  Google Scholar 

  36. B. Kovács. High-order evolving surface finite element method for parabolic problems on evolving surfaces. IMA J. Numer. Anal., 38(1):430–459, 2018.

    Article  MathSciNet  MATH  Google Scholar 

  37. B. Kovács, B. Li, and C. Lubich. A convergent evolving finite element algorithm for mean curvature flow of closed surfaces. Numer. Math., 143:797–853, 2019.

    Article  MathSciNet  MATH  Google Scholar 

  38. B. Kovács, B. Li, and C. Lubich. A convergent evolving finite element algorithm for Willmore flow of closed surfaces. Numer. Math., 149:595–643, 2021.

    Article  MathSciNet  MATH  Google Scholar 

  39. B. Kovács, B. Li, C. Lubich, and C. A. P. Guerra. Convergence of finite elements on an evolving surface driven by diffusion on the surface. Numer. Math., 137:643–689, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  40. B. Li. Convergence of Dziuk’s linearly implicit parametric finite element method for curve shortening flow. SIAM J. Numer. Anal., 58:2315–2333, 2020.

    Article  MathSciNet  MATH  Google Scholar 

  41. B. Li. Convergence of Dziuk’s semidiscrete finite element method for mean curvature flow of closed surfaces with high-order finite elements. SIAM J. Numer. Anal., 59:1592–1617, 2021.

    Article  MathSciNet  MATH  Google Scholar 

  42. C. Mantegazza. Lecture Notes on Mean Curvature Flow. . Basel AG, 2012.

    Google Scholar 

  43. A. Mierswa. Error estimates for a finite difference approximation of mean curvature flow for surfaces of torus type, PhD Thesis, Otto-von-Guericke-Universität, Magdeburg, 2020.

  44. B. White. Evolution of curves and surfaces by mean curvature. Proceedings of the International Congress of Mathematicians, 1:525–538, 2002.

    MathSciNet  MATH  Google Scholar 

  45. C. Ye and J. Cui. Convergence of Dziuk’s fully discrete linearly implicit scheme for curve shortening flow. SIAM J. Numer. Anal., 59:2823–2842, 2021.

    Article  MathSciNet  MATH  Google Scholar 

  46. Q. Zhao, W. Jiang, and W. Bao. A parametric finite element method for solid-state dewetting problems in three dimensions. SIAM J. Sci. Comput., 42:B327–B352, 2020.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work in this paper was partially supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. PolyU15303022), and an internal grant of The Hong Kong Polytechnic University (Project ID: P0038843).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Buyang Li.

Additional information

Communicated by Rob Stevenson.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Optimal Approximation Properties of the Interpolated Surfaces

Appendix: Optimal Approximation Properties of the Interpolated Surfaces

The quantities \(\kappa _l\) and \(\kappa _{*,l}\) defined in (3.1) characterize the shape regularity, quasi-uniformity and optimal approximation properties of the interpolated surface \({{\hat{\Gamma }}_{h,*}^m}\). In this appendix, we show that \(\kappa _l\) and \(\kappa _{*,l}\) have an upper bound which may depend on the exact solution and T, but is independent of \(\tau \), h and l. In order to make the argument clear, we denote by \(C_{\kappa _l}\) and \(C_0\) some generic constants which are dependent and independent of \(\kappa _l\), respectively.

1.1 A.1. Boundedness of Discrete Flow Maps in the \(\mathbf{W^{k-1,\infty }}\) and \(\mathbf{H^{k}}\) Norms: Part I

In terms of the notation in Sect. 3.2, for a curved triangle \(K^0\subset \Gamma _h^0\) we denote by \(K_\textrm{f}^0\) the unique flat triangle with the same three vertices as \(K^0\), and consider the piecewise flat triangular surface

$$\begin{aligned} \Gamma _{h,\textrm{f}}^0=\bigcup _{K^0\subset \Gamma _h^0} K_\textrm{f}^0. \end{aligned}$$

We still denote by \(\hat{X}_{h,*}^m:\Gamma _{h,\textrm{f}}^0\rightarrow {{\hat{\Gamma }}_{h,*}^m}\) the unique piecewise polynomial of degree k (with the nodal vector \(\hat{\textbf{x}}_*^m\) as before) which parametrizes \({{\hat{\Gamma }}_{h,*}^m}\), and consider the following decomposition:

$$\begin{aligned} \hat{X}_{h,*}^{q+1} = \hat{X}_{h,*}^0 + \sum _{m=0}^q (\hat{X}_{h,*}^{m+1} - \hat{X}_{h,*}^m) . \end{aligned}$$

Using the triangle inequality and the good quality of initial triangulation at \(t=0\), as shown in (2.1), we have

$$\begin{aligned} \Vert \hat{X}_{h,*}^{q+1} \Vert _{W^{j,\infty }_h(\Gamma _{h,\mathrm f}^0)}&\le C_0 + \sum _{m=0}^q \Vert \hat{X}_{h,*}^{m+1} - \hat{X}_{h,*}^m \Vert _{W^{j,\infty }_h(\Gamma _{h,\mathrm f}^0)} \quad \text{ for }\,\,\, 1\le j\le k-1 , \end{aligned}$$
(A.1)
$$\begin{aligned} \Vert \hat{X}_{h,*}^{q+1} \Vert _{H^{j}_h(\Gamma _{h,\mathrm f}^0)}&\le C_0 + \sum _{m=0}^q \Vert \hat{X}_{h,*}^{m+1} - \hat{X}_{h,*}^m \Vert _{H^{j}_h(\Gamma _{h,\mathrm f}^0)} \quad \text{ for }\,\,\, 1\le j\le k , \end{aligned}$$
(A.2)

where \(\Vert \cdot \Vert _{W^{j,\infty }_h(\Gamma _{h,\mathrm f}^0)}\) and \(\Vert \cdot \Vert _{H^{j}_h(\Gamma _{h,\mathrm f}^0)}\) denote the piecewise \(W^{j,\infty }\) norm and piecewise \(H^j\) norm, respectively, on the piecewise flat triangular surface \(\Gamma _{h,\mathrm f}^0\); see the definition of these piecewise Sobolev norms in Sect. 3.2.

In the next section, we shall prove the following two results under the condition \(\tau \le c h^k\) and \(h\le h_{\kappa _m}\) (where \(h_{\kappa _m}\) is some constant depending on \(\kappa _m\)):

$$\begin{aligned}&\Vert \hat{X}_{h, *}^{m+1} - \hat{X}_{h, *}^{m} \Vert _{W^{j,\infty }_h(\Gamma _ {h,\mathrm f}^0)} \nonumber \\&\le C_0 \tau [1 + (j-1)\Vert \hat{X}_{h, *}^{m}\Vert _{W^{j-1,\infty }_h(\Gamma _{h,\mathrm f}^0)}^j] + C_0\tau \Vert \hat{X}_{h, *}^{m}\Vert _{W^{j,\infty }_h(\Gamma _{h,\mathrm f}^0)} \nonumber \\&\quad \, + C_0 h^{k-j} \tau + C_{\kappa _m} (1+\kappa _{*,m}) h^{k-j-1} \tau \nonumber \\&\quad \, + C_{\kappa _m} h^{-j-1} \big ( \Vert {T^m_{*}}(e_{h}^{m+1} - \hat{e}_{h}^{m}) \Vert _{L^2({{\hat{\Gamma }}_{h,*}^m})} +h\Vert e_{h}^{m+1} - \hat{e}_{h}^{m} \Vert _{L^2({{\hat{\Gamma }}_{h,*}^m})} \big ) \end{aligned}$$
(A.3)

and

$$\begin{aligned}&\Vert \hat{X}_{h, *}^{m+1} - \hat{X}_{h, *}^{m} \Vert _{H^{j}_h(\Gamma _{h,\mathrm f}^0)} \nonumber \\&\le C_0 \tau [1 + (j-1)(j-2)\Vert \hat{X}_{h, *}^{m}\Vert _{W^{j-2,\infty }_h(\Gamma _{h,\mathrm f}^0)}^j\nonumber \\&\quad + (j-1)\Vert \hat{X}_{h, *}^{m}\Vert _{W^{1,\infty }(\Gamma _{h,\mathrm f}^0)}\Vert \hat{X}_{h, *}^{m}\Vert _{H^{j-1,\infty }_h(\Gamma _{h,\mathrm f}^0)}^j] \nonumber \\&\quad \, + C_0j \tau \Vert \hat{X}_{h, *}^{m}\Vert _{H^{j}_h(\Gamma _{h,\mathrm f}^0)} + C_0 h^{k-j} \tau + C_{\kappa _m} (1+\kappa _{*,m}) h^{k-j} \tau \nonumber \\&\quad \, + C_{\kappa _m} h^{-j} \big ( \Vert {T^m_{*}}(e_{h}^{m+1} - \hat{e}_{h}^{m}) \Vert _{L^2({{\hat{\Gamma }}_{h,*}^m})} +h\Vert e_{h}^{m+1} - \hat{e}_{h}^{m} \Vert _{L^2({{\hat{\Gamma }}_{h,*}^m})} \big ) . \end{aligned}$$
(A.4)

From (5.28), (5.52) and (5.74) we see that, by applying the inverse inequality,

$$\begin{aligned}&h^{-j-1}\Vert {T^m_{*}}({e_h^{m+1}}- {\hat{e}_h^m}) \Vert _{L^{2}({{\hat{\Gamma }}_{h,*}^m})} +h^{-j}\Vert {e_h^{m+1}}- {\hat{e}_h^m}\Vert _{L^{2}({{\hat{\Gamma }}_{h,*}^m})} \nonumber \\&\le C_{\kappa _m} h^{-j-1}\tau \Vert \nabla _{{{\hat{\Gamma }}_{h,*}^m}} {\hat{e}_h^m}\Vert _{L^2({{\hat{\Gamma }}_{h,*}^m})} + C_{\kappa _m} h^{-j-3} \tau \Vert \nabla _{{{\hat{\Gamma }}_{h,*}^m}} {\hat{e}_h^m}\Vert _{L^2({{\hat{\Gamma }}_{h,*}^m})}^2 \nonumber \\ {}&\quad + C_{\kappa _m} h^{-j-1}\tau (1+\kappa _{*,m}) h^{k} . \end{aligned}$$
(A.5)

Then, substituting this result into (A.3) and choosing \(j=1\), we derive the following estimate for \(0\le q\le l\):

$$\begin{aligned}&\sum _{m=0}^{q} \Vert \hat{X}_{h, *}^{m+1} - \hat{X}_{h, *}^{m} \Vert _{W^{1,\infty }(\Gamma _{h,\mathrm f}^0)} \\&\le C_0+ \sum _{m=0}^{q} C_0 \tau \Vert \hat{X}_{h, *}^{m}\Vert _{W^{1,\infty }(\Gamma _{h,\mathrm f}^0)} +C_0h^{k-1} + \sum _{m=0}^{q} C_{\kappa _m} \tau (1+\kappa _{*,m}) h^{k-2}\\&\quad \, + \sum _{m=0}^{q} C_{\kappa _m} \Big [ h^{-2}\tau \Vert \nabla _{{\hat{\Gamma }}_{h,*}^m} \hat{e}_h^m \Vert _{L^2({\hat{\Gamma }}_{h,*}^m)} + h^{-4} \tau \Vert \nabla _{{\hat{\Gamma }}_{h,*}^m} \hat{e} _h^m \Vert _{L^2({\hat{\Gamma }}_{h,*}^m)}^2 \Big ] \\&\le C_0 + C_{\kappa _{l}} (1+\kappa _{*,l}) h^{k-2} + C_{\kappa _{l}} (1+\kappa _{*,l})^2 h^{2k-4} + \sum _{m=0}^{q} C_0 \tau \Vert \hat{X}_{h, *}^{m}\Vert _{W^{1,\infty }(\Gamma _{h,\mathrm f}^0)} . \end{aligned}$$

Here we have used the error estimate in (5.74) with \(\tau \le c h^k\) in the last inequality. Since \(k\ge 3\), for sufficiently small mesh size \(h\le h_{\kappa _{l},\kappa _{*,l}}\) (with some constant which depends on \(\kappa _{l}\) and \(\kappa _{*,l}\)), substituting the last inequality into (A.1) and taking the square yield the following result:

$$\begin{aligned} \Vert \hat{X}_{h, *}^{q+1} \Vert _{W^{1,\infty }(\Gamma _{h,\mathrm f}^0)}^2 \le C_0 + \sum _{m=0}^{q} C_0 \tau \Vert \hat{X}_{h, *}^{m}\Vert _{W^{1,\infty }(\Gamma _{h,\mathrm f}^0)}^2 \quad \text{ for }\,\,\, 0\le q\le l. \end{aligned}$$
(A.6)

Then, by applying the discrete Grönwall’s inequality and taking the square root, we obtain

$$\begin{aligned} \max _{0\le q\le l} \Vert \hat{X}_{h, *}^{q+1} \Vert _{W^{1,\infty }(\Gamma _{h,\mathrm f}^0)} \le C_0 . \end{aligned}$$
(A.7)

Now, by using mathematical induction, we shall prove that if \(j\le k-2\) and \(\max \limits _{0\le q\le l} \Vert \hat{X}_{h, *}^{q+1} \Vert _{W_h^{j-1,\infty }(\Gamma _{h,\mathrm f}^0)}\le C_0\) then

$$\begin{aligned} \max _{0\le q\le l} \Vert \hat{X}_{h, *}^{q+1} \Vert _{W^{j,\infty }_h(\Gamma _{h,\mathrm f}^0)} \le C_0. \end{aligned}$$

In fact, if \(\max \limits _{0\le q\le l} \Vert \hat{X}_{h, *}^{q+1} \Vert _{W^{j-1,\infty }(\Gamma _{h,\mathrm f}^0)}\le C_0\) then summing up (A.3) for \(m=0,\ldots ,q\) and using (A.5) yield the following result:

$$\begin{aligned}&\sum _{m=0}^{q} \Vert \hat{X}_{h, *}^{m+1} - \hat{X}_{h, *}^{m} \Vert _{W^{j,\infty }_h(\Gamma _h^0)} \\&\le C_0(1+h^{k-j}) + \sum _{m=0}^{q} C_0 \tau \Vert \hat{X}_{h, *}^{m}\Vert _{W^{j,\infty }_h(\Gamma _{h,\mathrm f}^0)} + \sum _{m=0}^{q} C_{\kappa _m} h^{k-j-1}\tau (1+\kappa _{*,m}) \\&\quad \, + \sum _{m=0}^{q} C_{\kappa _m} \Big [ h^{-j-1}\tau \Vert \nabla _{{\hat{\Gamma }}_{h,*}^m} \hat{e}_h^m \Vert _{L^2({\hat{\Gamma }}_{h,*}^m)} + h^{-j-3} \tau \Vert \nabla _{{\hat{\Gamma }}_{h,*}^m} \hat{e} _h^m \Vert _{L^2({\hat{\Gamma }}_{h,*}^m)}^2 \Big ]\\&\le C_0(1+h^{k-j}) + \sum _{m=0}^{q} C_0 \tau \Vert \hat{X}_{h, *}^{m}\Vert _{W^{j,\infty }_h(\Gamma _{h,\mathrm f}^0)} \\&\quad \, + C_{\kappa _{l}} \Big (1+\sum _{m=0}^q \tau \kappa _{*,m}^2\Big )^{\frac{1}{2}} h^{k-j-1} + C_{\kappa _{l}} (1+\kappa _{*,l})^2 h^{2k-j-3} , \end{aligned}$$

where we have used the error estimate in (5.74) in the last inequality. Since \(k\ge 3\), for sufficiently small mesh size \(h\le h_{\kappa _{l},\kappa _{*,l}}\) (with some constant which depends on \(\kappa _{l}\) and \(\kappa _{*,l}\)), substituting the last inequality into (A.1) and taking the square yield the following result for \(j\le k-2\):

$$\begin{aligned} \Vert \hat{X}_{h, *}^{q+1}\Vert _{W^{j,\infty }_h(\Gamma _{h,\mathrm f}^0)}^2&\le C_0+ \sum _{m=0}^{q} C_0 \tau \Vert \hat{X}_{h, *}^{m}\Vert _{W^{j,\infty }_h(\Gamma _{h,\mathrm f}^0)}^2 \quad \text{ for }\,\,\, 0\le q\le l. \end{aligned}$$

Then, by applying the discrete Grönwall’s inequality and taking the square root, we obtain

$$\begin{aligned} \max _{0\le q\le l} \Vert \hat{X}_{h, *}^{q+1} \Vert _{W^{j,\infty }_h(\Gamma _{h,\mathrm f}^0)} \le C_0 . \end{aligned}$$
(A.8)

This proves (A.8) for \(1\le j\le k-2\). Analogously, by using (A.4), we can prove the following result for \(1\le j\le k-1\):

$$\begin{aligned} \max _{0\le q\le l} \Vert \hat{X}_{h, *}^{q+1} \Vert _{H^{j}_h(\Gamma _{h,\mathrm f}^0)} \le C_0 . \end{aligned}$$
(A.9)

Similar estimate for \(\max \limits _{0\le q\le l}\Vert (\hat{X}_{h,*}^{q+1})^{-1} \Vert _{W^{1,\infty }_h({\hat{\Gamma }}_{h,*}^j)}\) can also be proved and omitted here. This proves that if \(\tau \le c h^k\) and \(h\le h_{\kappa _{l},\kappa _{*,l}}\) then \(\kappa _{l+1}\le C_0\) in view of the definition in (3.1).

Therefore, we can replace \(C_{\kappa _m}\) by \(C_0\) in (A.3)–(A.4) and obtain the following results for \(0\le q\le l\) in the same way as above, under the conditions \(\tau \le c h^k\) and \(h\le h_{\kappa _{l},\kappa _{*,l}}\):

$$\begin{aligned} \Vert \hat{X}_{h, *}^{q+1}\Vert _{W^{k-1,\infty }_h(\Gamma _{h,\mathrm f}^0)}^2&\le C_0+\sum _{m=0}^{q} C_0 \tau \kappa _{*,m} ^2 + \sum _{m=0}^{q} C_0 \tau \Vert \hat{X}_{h, *}^{m}\Vert _{W^{k-1,\infty }_h(\Gamma _{h,\mathrm f}^0)}^2 ,\end{aligned}$$
(A.10)
$$\begin{aligned} \Vert \hat{X}_{h, *}^{l+1}\Vert _{H^{k}_h(\Gamma _{h,\mathrm f}^0)}^2&\le C_0+\sum _{m=0}^{q} C_0 \tau \kappa _{*,m} ^2 + \sum _{m=0}^{q} C_0 \tau \Vert \hat{X}_{h, *}^{m}\Vert _{H^{k}_h(\Gamma _{h,\mathrm f}^0)}^2 . \end{aligned}$$
(A.11)

In regard to the definition of \(\kappa _{*,m}\) in (3.1), we can replace \(\kappa _{*,m}\) by \(\Vert \hat{X}_{h, *}^{m}\Vert _{W^{k-1,\infty }_h(\Gamma _{h,\mathrm f}^0)}+\Vert \hat{X}_{h, *}^{m}\Vert _{H^{k}_h(\Gamma _{h,\mathrm f}^0)}\) and then sum up the two inequalities above. This yields that

$$\begin{aligned}&\Vert \hat{X}_{h, *}^{q+1}\Vert _{H^{k}_h(\Gamma _{h,\mathrm f}^0)}^2 +\Vert \hat{X}_{h, *}^{q+1}\Vert _{W^{k-1,\infty }_h(\Gamma _{h,\mathrm f}^0)}^2 \nonumber \\&\le C_0 + \sum _{m=0}^{q} C_0 \tau (\Vert \hat{X}_{h, *}^{m}\Vert _{H^{k}_h(\Gamma _{h,\mathrm f}^0)}^2 +\Vert \hat{X}_{h, *}^{m}\Vert _{W^{k-1,\infty }_h(\Gamma _{h,\mathrm f}^0)}^2) . \end{aligned}$$
(A.12)

By applying Grönwall’s inequality and taking the square root, we obtain

$$\begin{aligned} \max _{0\le q\le l} (\Vert \hat{X}_{h, *}^{q+1}\Vert _{H^{k}_h(\Gamma _{h,\mathrm f}^0)} +\Vert \hat{X}_{h, *}^{q+1}\Vert _{W^{k-1,\infty }_h(\Gamma _{h,\mathrm f}^0)} ) \le C_0 . \end{aligned}$$
(A.13)

This proves that \(\kappa _{*,l+1}\le C_0\) in view of its definition in (3.1). For this constant \(C_0\) (which is independent of l) we get the following result: If \(\kappa _l\le C_0\) and \(\kappa _{*,l}\le C_0\), and \(\tau \le c h^k\) with \(h\le h_{C_0,C_0}\), then

$$\begin{aligned} \kappa _{l+1}\le C_0 \quad \text{ and }\quad \kappa _{*,l+1} \le C_0 . \end{aligned}$$
(A.14)

This proves (A.14) by mathematical induction under the conditions \(\tau \le c h^k\) and \(h\le h_{C_0,C_0}\). As a result, the quantities \(\kappa _l\) and \(\kappa _{*,l}\) defined in (3.1) are uniformly bounded with respect to \(\tau \), h and l under the required conditions on the stepsize and mesh size.

1.2 A.2. Boundedness of Discrete Flow Maps in the \(\mathbf{W^{k-1,\infty }}\) and \(\mathbf{H^{k}}\) Norms: Part II

In this appendix we prove (A.3)–(A.4), which are used in Appendix A.1 to prove (A.14).

Note that the nodal vectors \({\hat{\textbf{x}}}_*^{m}\) and \({\hat{\textbf{x}}}_*^{m + 1}\) are defined as the distance projection of \(\textbf{x}^m\) and \(\textbf{x}^{m+1}\) onto the smooth surfaces \(\Gamma ^m\) and \(\Gamma ^{m+1}\). Therefore, \(\hat{e}_{h}^m = X_{h}^{m} - \hat{X}_{h,*}^{m}\) and \(\hat{e}_{h}^{m+1} = X_{h}^{m+1} - \hat{X}_{h,*}^{m+1}\) are in the directions of \({n^m_{*}}\) and \(n_*^{m+1}\) at the nodes, respectively. From the geometric relation in Fig. 4 we observe the following vector decomposition at the j-th node:

$$\begin{aligned} {N^m_{*}}(\hat{x}_{j,*}^{m + 1} -\hat{x}_{j,*}^{m}) = x_{j,*}^{m + 1} -\hat{x}_{j,*}^{m} + \rho _h|_{{j\hbox {-th node}}} , \end{aligned}$$

and passing to finite element functions, it holds that

$$\begin{aligned} {N^m_{*}}(\hat{X}_{h,*}^{m + 1} -\hat{X}_{h,*}^{m}) = (X^{m + 1} - \textrm{id})\circ a^m + \rho _h \quad \text{ at } \text{ the } \text{ nodes } \text{ of }\, {{\hat{\Gamma }}_{h,*}^m}\end{aligned}$$
(A.15)

for some finite element function \(\rho _h\) such that by the triangle inequality

$$\begin{aligned} |\rho _h| \le C_0 \tau ^2 + C_0 |T_*^m (\hat{X}_{h,*}^{m + 1} -\hat{X}_{h,*}^{m})|^2 \quad \text{ at } \text{ the } \text{ nodes } , \end{aligned}$$
(A.16)

where \(C_0\tau ^2\) arises from the quadratic term in the Taylor expansion of the exact flow, which measures the deviation of \(X_{h, *}^{m+1}\) away from the normal direction, while \(|T_*^m (\hat{X}_{h,*}^{m + 1} -\hat{X}_{h,*}^{m})|^2\) measures the difference of lengths in the normal direction, as shown in Fig. 4. The latter is essentially the product of \(|T_*^m (\hat{X}_{h,*}^{m + 1} -\hat{X}_{h,*}^{m})|\) (the length of one side of a right triangle) and the tangent of an angle whose amplitude is of order \(O(|T_*^m (\hat{X}_{h,*}^{m + 1} -\hat{X}_{h,*}^{m})|)\).

Fig. 4
figure 4

The geometric relation at the j-th node

Moreover, since \(T_*^m (\hat{X}_{h,*}^{m} - X_{h}^{m})=0\) at the nodes and \(T_*^{m}N_*^{m} =0\), the following relation holds:

$$\begin{aligned} T_*^m (\hat{X}_{h,*}^{m + 1} -\hat{X}_{h,*}^{m})&= T_*^m (X_{h}^{m + 1} - X_{h}^{m}) + T_*^m (\hat{X}_{h,*}^{m + 1} - X_{h}^{m + 1}) - T_*^m (\hat{X}_{h,*}^{m} - X_{h}^{m}) \nonumber \\&= T_*^m (X_{h}^{m + 1} - X_{h}^{m}) + T_*^m N_*^{m+1} (\hat{X}_{h,*}^{m + 1} - X_{h}^{m + 1}) \nonumber \\&= T_*^m (X_{h}^{m + 1} - X_{h}^{m}) + T_*^m (N_*^{m+1}-N_*^{m}) \hat{e}_{h}^{m + 1} \quad \text{ at } \text{ the } \text{ nodes } . \end{aligned}$$
(A.17)

In the last equality we have used \(\hat{e}_{h}^{m + 1}=\hat{X}_{h,*}^{m + 1} - X_{h}^{m + 1}\). Therefore, by decomposing \(\hat{X}_{h, *}^{m+1} - \hat{X}_{h, *}^{m}\) into the normal and tangential components and applying the triangle inequality, we have

$$\begin{aligned}&\Vert \hat{X}_{h, *}^{m+1} - \hat{X}_{h, *}^{m} \Vert _{W^{j,\infty }_h(\Gamma _ {h,\mathrm f}^0)} \nonumber \\&\le \Vert I_h {N^m_{*}}(\hat{X}_{h, *}^{m+1} - \hat{X}_{h, *}^{m}) \Vert _{W^{j,\infty }_h(\Gamma _ {h,\mathrm f}^0)} + \Vert I_h {T^m_{*}}(\hat{X}_{h, *}^{m+1} - \hat{X}_{h, *}^{m}) \Vert _{W^{j,\infty }_h(\Gamma _ {h,\mathrm f}^0)} \nonumber \\&\le \Vert I_h [(X^{m+1} - \textrm{id})\circ a^m\circ \hat{X}_{h, *}^{m} ] + \rho _h \Vert _{W^{j,\infty }_h(\Gamma _ {h,\mathrm f}^0)}\nonumber \\&\quad \,\, \text{(relation }\,(A.15)\hbox { is pulled back to}\, \Gamma _ {h,\mathrm f}^0) \nonumber \\&\quad + C_0h^{-j} \Vert I_h {T^m_{*}}(\hat{X}_{h, *}^{m+1} - \hat{X}_{h, *}^{m}) \Vert _{L^\infty (\Gamma _ {h,\mathrm f}^0)} . \end{aligned}$$
(A.18)

The first term on the right-hand side of (A.18) can be estimated by using (A.16) as follows:

$$\begin{aligned}&\Vert I_h [(X^{m+1} - \textrm{id})\circ a^m\circ \hat{X}_{h, *}^{m} ] + \rho _h \Vert _{W^{j,\infty }_h(\Gamma _{h,\mathrm f}^0)} \nonumber \\&\le C_0 \Vert X^{m+1} - \textrm{id} \Vert _{W^{j,\infty }({\Gamma ^m})} \Big (1+ \sum _{\begin{array}{c} j_1+\cdots +j_i\le j\\ j_1,\ldots ,j_i\ge 1 \end{array}} \Vert \hat{X}_{h, *}^{m}\Vert _{W_h^{j_1,\infty }(\Gamma _{h,\mathrm f}^0)}\cdots \Vert \hat{X}_{h, *}^{m}\Vert _{W_h^{j_i,\infty }(\Gamma _{h,\mathrm f}^0)} \Big ) \nonumber \\&\quad \, + C_0 h^{-j} \Vert \rho _h \Vert _{L^{\infty }(\Gamma _{h,\mathrm f}^0)} \nonumber \\&\le C_0 \tau [1 + j(j-1)\Vert \hat{X}_{h, *}^{m}\Vert _{W_h^{j-1,\infty }(\Gamma _{h,\mathrm f}^0)}^j] + C_0j \tau \Vert \hat{X}_{h, *}^{m}\Vert _{W_h^{j,\infty }(\Gamma _{h,\mathrm f}^0)} \nonumber \\&\quad \, + C_0 h^{-j}(\tau ^2+\Vert I_hT_*^m (\hat{X}_{h,*}^{m + 1} -\hat{X}_{h,*}^{m})\Vert _{L^\infty (\Gamma _{h,\mathrm f}^0)}^2 ) . \end{aligned}$$
(A.19)

Here we have added a factor \(j(j-1)\) in front of \(\Vert \hat{X}_{h, *}^{m}\Vert _{W_h^{j-1,\infty }(\Gamma _{h,\mathrm f}^0)}\) to indicate that this term should disappear in the case \(j=1\), and we have added a factor j in front of \(\Vert \hat{X}_{h, *}^{m}\Vert _{W_h^{j,\infty }(\Gamma _{h,\mathrm f}^0)}\) to indicate that this term should disappear in the case \(j=0\).

The second term on the right-hand side of (A.18), as well as the last term on the right-hand side of (A.19), can be estimated by using relation (A.17), i.e.,

$$\begin{aligned}&\Vert I_hT_*^m (\hat{X}_{h,*}^{m + 1} -\hat{X}_{h,*}^{m})\Vert _{L^\infty (\Gamma _{h,\mathrm f}^0)} \nonumber \\&\le \Vert I_h {T^m_{*}}(X_{h}^{m+1} - X_{h}^{m}) \Vert _{L^\infty (\Gamma _ {h,\mathrm f}^0)} + \Vert I_h T_*^m (N_*^{m+1}-N_*^{m}) \hat{e}_{h}^{m + 1} \Vert _{L^\infty (\Gamma _ {h,\mathrm f}^0)} . \end{aligned}$$
(A.20)

In the case \(j=0\) we get from (A.18) and (A.19) the following result:

$$\begin{aligned}&\Vert \hat{X}_{h, *}^{m+1} - \hat{X}_{h, *}^{m} \Vert _{L^\infty (\Gamma _ {h,\mathrm f}^0)} \nonumber \\&\le C_0 \tau + C_0\Vert I_hT_*^m (\hat{X}_{h,*}^{m + 1} -\hat{X}_{h,*}^{m})\Vert _{L^\infty (\Gamma _{h,\mathrm f}^0)}^2 + \Vert I_hT_*^m (\hat{X}_{h,*}^{m + 1} -\hat{X}_{h,*}^{m})\Vert _{L^\infty (\Gamma _{h,\mathrm f}^0)} \nonumber \\&\le C_0 \tau + C_0\Vert I_hT_*^m (\hat{X}_{h,*}^{m + 1} -\hat{X}_{h,*}^{m})\Vert _{L^\infty (\Gamma _{h,\mathrm f}^0)} , \end{aligned}$$
(A.21)

where the last inequality follows from the estimate in (5.39), which implies that

$$\begin{aligned} \Vert \hat{X}_{h,*}^{m + 1} -\hat{X}_{h,*}^{m} \Vert _{L^\infty (\Gamma _{h,\mathrm f}^0)} + \Vert I_hT_*^m (\hat{X}_{h,*}^{m + 1} -\hat{X}_{h,*}^{m})\Vert _{L^\infty (\Gamma _{h,\mathrm f}^0)} \le C_{\kappa _l} h^{0.5}\le 1 , \end{aligned}$$
(A.22)

when \(h\le h_{\kappa _l}\) (for some constant \(h_{\kappa _l}\) which may depend on \(\kappa _l\)).

In the case \(j\ge 1\) we obtain from (A.18)–(A.19) and (A.22) the following result:

$$\begin{aligned}&\Vert \hat{X}_{h, *}^{m+1} - \hat{X}_{h, *}^{m} \Vert _{W^{j,\infty }_h(\Gamma _ {h,\mathrm f}^0)} \nonumber \\&\le C_0 \tau [1 + j(j-1)\Vert \hat{X}_{h, *}^{m}\Vert _{W_h^{j-1,\infty }(\Gamma _{h,\mathrm f}^0)}^j] + C_0j \tau \Vert \hat{X}_{h, *}^{m}\Vert _{W_h^{j,\infty }(\Gamma _{h,\mathrm f}^0)} \nonumber \\&\quad \, + C_0 h^{-j}\tau ^2 + C_0h^{-j} \Vert I_h {T^m_{*}}(\hat{X}_{h, *}^{m+1} - \hat{X}_{h, *}^{m}) \Vert _{L^\infty (\Gamma _ {h,\mathrm f}^0)} . \end{aligned}$$
(A.23)

The first term on the right-hand side of (A.20) can be estimated by using the geometric relation in (3.15), which implies that

$$\begin{aligned}&\Vert I_h {T^m_{*}}(X_{h}^{m+1} - X_{h}^{m}) \Vert _{L^\infty (\Gamma _ {h,\mathrm f}^0)} \\&\le \Vert I_h{T^m_{*}}(e_{h}^{m+1} - \hat{e}_{h}^{m}) \Vert _{L^\infty (\Gamma _ {h,\mathrm f}^0)} + \tau \Vert I_h{T^m_{*}}I_h(H^mn^m - g) \Vert _{L^\infty (\Gamma _ {h,\mathrm f}^0)} \\&= \Vert I_h{T^m_{*}}(e_{h}^{m+1} - \hat{e}_{h}^{m}) \Vert _{L^\infty (\Gamma _ {h,\mathrm f}^0)} + \tau \Vert I_h{T^m_{*}}I_h g \Vert _{L^\infty (\Gamma _ {h,\mathrm f}^0)}\\&\quad \text{(as }\,{T^m_{*}}I_h(H^mn^m)=0\hbox { at the nodes)}\\&\le \Vert I_h{T^m_{*}}(e_{h}^{m+1} - \hat{e}_{h}^{m}) \Vert _{L^\infty ({{\hat{\Gamma }}_{h,*}^m})} + C_0 \tau \Vert g \Vert _{L^\infty ({\Gamma ^m})} , \end{aligned}$$

where the last inequality follows from the \(L^\infty \) stability of the Lagrange interpolation operator (with respect to the nodal values) on the initial triangulated surface \(\Gamma _ {h,\mathrm f}^0\), and the fact that the nodal values of \(I_h{T^m_{*}}I_h g\) is bounded by \(\Vert g \Vert _{L^\infty ({\Gamma ^m})} \). Then, by applying the inverse inequality to convert the \(L^\infty ({{\hat{\Gamma }}_{h,*}^m})\) norm to the \(L^2({{\hat{\Gamma }}_{h,*}^m})\) norm (with a constant depending on \(\kappa _l\) and independent of \(\kappa _{*,l}\)), we obtain

$$\begin{aligned}&\Vert I_h {T^m_{*}}(X_{h}^{m+1} - X_{h}^{m}) \Vert _{L^\infty (\Gamma _ {h,\mathrm f}^0)} \nonumber \\&\le C_{\kappa _m} h^{-1}\Vert I_h{T^m_{*}}(e_{h}^{m+1} - \hat{e}_{h}^{m}) \Vert _{L^2({{\hat{\Gamma }}_{h,*}^m})} + C_0 \tau ^2 \qquad \text{(here }\,(3.14)\hbox { is used)} \nonumber \\&\le C_{\kappa _m} h^{-1} \big ( \Vert {T^m_{*}}(e_{h}^{m+1} - \hat{e}_{h}^{m}) \Vert _{L^2({{\hat{\Gamma }}_{h,*}^m})} +h\Vert e_{h}^{m+1} - \hat{e}_{h}^{m} \Vert _{L^2({{\hat{\Gamma }}_{h,*}^m})} \big ) + C_0 \tau ^2 . \end{aligned}$$
(A.24)

In the last inequality, we have used the super-approximation estimates in Lemma 4.4.

The second term on the right-hand side of (A.20) can be estimated by using the inverse inequality and the expression \({N^m_{*}}= (n_*^{m}\circ \hat{X}_{h,*}^{m}) (n_*^{m}\circ \hat{X}_{h,*}^{m})^\top \) at the nodes, i.e.,

$$\begin{aligned}&\Vert I_h {T^m_{*}}(N_*^{m+1}-{N^m_{*}}) \hat{e}_{h}^{m + 1} \Vert _{L^\infty ({{\hat{\Gamma }}_{h,*}^m})} \nonumber \\&\le C_{\kappa _m} \Vert I_h[ ( N_*^{m+1}-{N^m_{*}}) \hat{e}_{h}^{m + 1} ] \Vert _{L^\infty ({{\hat{\Gamma }}_{h,*}^m})} \nonumber \\&\le C_{\kappa _m} \Vert I_h [n_*^{m+1}\circ \hat{X}_{h,*}^{m+1} - n_*^{m}\circ \hat{X}_{h,*}^{m} ]\Vert _{L^\infty ({{\hat{\Gamma }}_{h,*}^m})} \Vert \hat{e}_{h}^{m + 1} \Vert _{L^\infty ({{\hat{\Gamma }}_{h,*}^m})} \nonumber \\&\le C_{\kappa _m} \Vert I_h[n_*^{m+1}\circ \hat{X}_{h,*}^{m+1} - n_*^{m+1}\circ X_{h,*}^{m+1}] \Vert _{L^\infty ({{\hat{\Gamma }}_{h,*}^m})} \Vert \hat{e}_{h}^{m + 1} \Vert _{L^\infty ({{\hat{\Gamma }}_{h,*}^m})} \nonumber \\&\quad \, +C_{\kappa _m} \Vert I_h[n_*^{m+1}\circ X_{h,*}^{m+1} - n_*^{m}\circ \hat{X}_{h,*}^{m}] \Vert _{L^\infty ({{\hat{\Gamma }}_{h,*}^m})} \Vert \hat{e}_{h}^{m + 1} \Vert _{L^\infty ({{\hat{\Gamma }}_{h,*}^m})} \nonumber \\&\le C_{\kappa _m} (\Vert I_hT_*^{m+1} (\hat{X}_{h,*}^{m+1} - X_{h,*}^{m+1}) \Vert _{L^\infty ({{\hat{\Gamma }}_{h,*}^m})} +\Vert \hat{X}_{h,*}^{m+1} -\nonumber \\&\quad X_{h,*}^{m+1} \Vert _{L^\infty ({{\hat{\Gamma }}_{h,*}^m})}^2 +\tau ) \Vert \hat{e}_{h}^{m + 1} \Vert _{L^\infty ({{\hat{\Gamma }}_{h,*}^m})} \nonumber \\&\le C_{\kappa _m} (\Vert I_hT_*^{m+1}(\hat{X}_{h,*}^{m+1} - \hat{X}_{h,*}^{m}) \Vert _{L^\infty ({{\hat{\Gamma }}_{h,*}^m})} +\Vert \hat{X}_{h,*}^{m+1}\nonumber \\&\quad - \hat{X}_{h,*}^{m} \Vert _{L^\infty ({{\hat{\Gamma }}_{h,*}^m})}^2 +\tau ) \Vert \hat{e}_{h}^{m + 1} \Vert _{L^\infty ({{\hat{\Gamma }}_{h,*}^m})} , \end{aligned}$$
(A.25)

where the derivation of the second to last inequality of (A.25) uses the following two arguments:

  1. (i)

    We have used the Taylor expansion of \( n_*^{m+1}\circ \hat{X}_{h,*}^{m+1} - n_*^{m+1}\circ X_{h,*}^{m+1} \) at \(\hat{X}_{h,*}^{m+1}\) up to the quadratic term, with the following observation: Since both \(\hat{X}_{h,*}^{m+1}\) and \(X_{h,*}^{m+1}\) take values on \(\Gamma ^{m+1}\), and the value of \([(\nabla _{\Gamma ^{m+1}} n_*^{m+1}) \circ \hat{X}_{h,*}^{m+1}] (\hat{X}_{h,*}^{m+1} - \hat{X}_{h,*}^{m})\) at a node only depends on the value of \(T_*^{m+1}(\hat{X}_{h,*}^{m +1} - \hat{X}_{h,*}^{m})\) at the node, it follows that

    $$\begin{aligned} |I_h (\nabla _{\Gamma ^{m+1}} n_*^{m+1}) (\hat{X}_{h,*}^{m+1} - \hat{X}_{h,*}^{m}) | \le C_0 |I_hT_*^{m+1}(\hat{X}_{h,*}^{m +1} - \hat{X}_{h,*}^{m}) | \quad \text{ at } \text{ the } \text{ nodes }. \end{aligned}$$
  2. (ii)

    The value of \(n_*^{m+1}\circ X_{h,*}^{m+1} - n_*^{m}\circ \hat{X}_{h,*}^{m}\) at a node is the change of the normal vector along a particle trajectory of length \(O(\tau )\).

The last inequality of (A.25) follows from the triangle inequality and the property \(|X_{h,*}^{m+1}-\hat{X}_{h,*}^{m}|=O(\tau )\) at the nodes, because the value of \(X_{h,*}^{m+1}-\hat{X}_{h,*}^{m}\) at a node is the distance a particle moves within time period \(\tau \).

Then, substituting (A.21) into (A.25) and using the result \(\Vert \hat{X}_{h,*}^{m+1} - \hat{X}_{h,*}^{m} \Vert _{L^\infty ({{\hat{\Gamma }}_{h,*}^m})} \le 1\) shown in (A.22), we get

$$\begin{aligned}&\Vert I_h {T^m_{*}}(N_*^{m+1}-{N^m_{*}}) \hat{e}_{h}^{m + 1} \Vert _{L^\infty ({{\hat{\Gamma }}_{h,*}^m})} \nonumber \\&\le C_{\kappa _m} (\Vert I_hT_*^{m+1}(\hat{X}_{h,*}^{m+1} - \hat{X}_{h,*}^{m}) \Vert _{L^\infty ({{\hat{\Gamma }}_{h,*}^m})} +\tau ) \Vert \hat{e}_{h}^{m + 1} \Vert _{L^\infty ({{\hat{\Gamma }}_{h,*}^m})} \nonumber \\&\le C_{\kappa _m} h^{0.5} \Vert I_hT_*^{m+1}(\hat{X}_{h,*}^{m+1} - \hat{X}_{h,*}^{m}) \Vert _{L^\infty ({{\hat{\Gamma }}_{h,*}^m})} + C_{\kappa _m} \tau h^{-1} \Vert \hat{e}_{h}^{m + 1} \Vert _{L^2({{\hat{\Gamma }}_{h,*}^m})} \nonumber \\&\le C_{\kappa _m} h^{0.5} \Vert I_hT_*^m(\hat{X}_{h,*}^{m+1} - \hat{X}_{h,*}^{m}) \Vert _{L^\infty ({{\hat{\Gamma }}_{h,*}^m})} + C_{\kappa _m} (1+\kappa _{*,m}) \tau h^{-1}(\tau +h^k) , \end{aligned}$$
(A.26)

where the second to last inequality follows from the estimate \(\Vert \hat{e}^{m+1}_{h}\Vert _{L^\infty ({\hat{\Gamma }}_{h,*}^m)}\le C_{\kappa _m} h^{0.5}\) in (5.38) and the inverse inequality, and the last inequality follows from the error estimate of \(\Vert \hat{e}_{h}^{m + 1} \Vert _{L^2({{\hat{\Gamma }}_{h,*}^m})}\) in (5.74) and from replacing \(T_*^{m+1}\) by \(T_*^{m}\) with an error of \(O(\tau )\) at the nodes. Note that we have replaced \(\kappa _l\) and \(\kappa _{*,l}\) by \(\kappa _m\) and \(\kappa _{*,m}\), respectively, when we estimate \(\Vert \hat{e}^{m+1}_{h}\Vert _{L^\infty ({\hat{\Gamma }}_{h,*}^m)}\) and \(\Vert \hat{e}^{m+1}_{h}\Vert _{L^2({\hat{\Gamma }}_{h,*}^m)}\) using (5.38) and (5.74). This is correct as the estimation of \(\hat{e}_{h}^{m + 1}\) only requires using \(\kappa _m\) and \(\kappa _{*,m}\) instead of \(\kappa _l\) and \(\kappa _{*,l}\) (unless we want to consider the maximum error among \(m=0,\ldots ,l\) as in (5.74)). We also note that the error estimate of \(\Vert \hat{e}_{h}^{m + 1} \Vert _{L^2({{\hat{\Gamma }}_{h,*}^m})}\) using (5.74) requires the mesh size to satisfy \(h\le h_{\kappa _m,\kappa _{*,m}}\) for some constant \(h_{\kappa _m,\kappa _{*,m}}\) which may depend on \(\kappa _m\) and \(\kappa _{*,m}\). Now we can substitute (A.24) and (A.26) into (A.20). This yields the following estimate:

$$\begin{aligned}&\Vert I_hT_*^m (\hat{X}_{h,*}^{m + 1} -\hat{X}_{h,*}^{m})\Vert _{L^\infty (\Gamma _{h,\mathrm f}^0)} \nonumber \\&\le \Vert I_h {T^m_{*}}(X_{h}^{m+1} - X_{h}^{m}) \Vert _{L^\infty (\Gamma _ {h,\mathrm f}^0)} + \Vert I_h T_*^m (N_*^{m+1}-N_*^{m}) \hat{e}_{h}^{m + 1} \Vert _{L^\infty (\Gamma _ {h,\mathrm f}^0)} \nonumber \\&\le C_{\kappa _m} h^{-1} \big ( \Vert {T^m_{*}}(e_{h}^{m+1} - \hat{e}_{h}^{m}) \Vert _{L^2({{\hat{\Gamma }}_{h,*}^m})} +h\Vert e_{h}^{m+1} - \hat{e}_{h}^{m} \Vert _{L^2({{\hat{\Gamma }}_{h,*}^m})} \big ) + C_0 \tau ^2 \nonumber \\&\quad \, + C_{\kappa _m} h^{0.5} \Vert I_hT_*^{m}(\hat{X}_{h,*}^{m+1} - \hat{X}_{h,*}^{m}) \Vert _{L^\infty ({{\hat{\Gamma }}_{h,*}^m})} + C_{\kappa _m} (1+\kappa _{*,m}) \tau h^{-1}(\tau +h^k) . \end{aligned}$$
(A.27)

The second to last term on the right-hand side of (A.27) can be absorbed by the left-hand side by choosing sufficiently small h, say \(h\le h_{\kappa _m,\kappa _{*,m}}\) for some constant \(h_{\kappa _m,\kappa _{*,m}}\) which may depend on \(\kappa _m\) and \(\kappa _{*,m}\). Then it holds that

$$\begin{aligned}&\Vert I_hT_*^m (\hat{X}_{h,*}^{m + 1} -\hat{X}_{h,*}^{m})\Vert _{L^\infty (\Gamma _{h,\mathrm f}^0)} \nonumber \\&\le C_{\kappa _m} h^{-1} \big ( \Vert {T^m_{*}}(e_{h}^{m+1} - \hat{e}_{h}^{m}) \Vert _{L^2({{\hat{\Gamma }}_{h,*}^m})} +h\Vert e_{h}^{m+1} - \hat{e}_{h}^{m} \Vert _{L^2({{\hat{\Gamma }}_{h,*}^m})} \big ) \nonumber \\&\quad \, + C_0 \tau ^2 + C_{\kappa _m} (1+\kappa _{*,m}) \tau h^{-1}(\tau +h^k) . \end{aligned}$$
(A.28)

By substituting (A.28) into (A.23) we obtain the following result for \(j\ge 1\):

$$\begin{aligned}&\Vert \hat{X}_{h, *}^{m+1} - \hat{X}_{h, *}^{m} \Vert _{W^{j,\infty }_h(\Gamma _ {h,\mathrm f}^0)} \nonumber \\&\le C_0 \tau [1 + (j-1)\Vert \hat{X}_{h, *}^{m}\Vert _{W^{j-1,\infty }_h(\Gamma _{h,\mathrm f}^0)}^j] + C_0 \tau \Vert \hat{X}_{h, *}^{m}\Vert _{W^{j,\infty }_h(\Gamma _{h,\mathrm f}^0)} \nonumber \\&\quad \, + C_0 h^{-j} \tau ^2 + C_{\kappa _m} (1+\kappa _{*,m}) \tau h^{-j-1}(\tau +h^k) \nonumber \\&\quad \, + C_{\kappa _m} h^{-j-1} \big ( \Vert {T^m_{*}}(e_{h}^{m+1} - \hat{e}_{h}^{m}) \Vert _{L^2({{\hat{\Gamma }}_{h,*}^m})} +h\Vert e_{h}^{m+1} - \hat{e}_{h}^{m} \Vert _{L^2({{\hat{\Gamma }}_{h,*}^m})} \big ) . \end{aligned}$$
(A.29)

This proves the relation in (A.3) under the stepsize condition \(\tau \le c h^k\). The proof of (A.4) is similar (only the norm is changed) and omitted.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, G., Li, B. A New Approach to the Analysis of Parametric Finite Element Approximations to Mean Curvature Flow. Found Comput Math (2023). https://doi.org/10.1007/s10208-023-09622-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10208-023-09622-x

Keywords

Mathematics Subject Classification

Navigation