Skip to main content

Advertisement

Log in

Phosphate sludge valorization as new alternative precursor for carbonated hydroxyapatite nanostructures: synthesis and characterization

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

During the beneficiation stage, phosphate ore processing plants generate a huge quantity of phosphate sludge (PS), consisting of washing and flotation residues. This waste has a number of negative effects, such as limiting the availability of fertile land, altering the landscape and creating visually unattractive areas. Effective management of this waste is a major challenge for the phosphate industry. This study addresses the crucial problem of PS management by innovatively producing carbonated hydroxyapatite (HAp) nanostructures using the dissolution–precipitation method. Importantly, this method is applied for the first time to Moroccan phosphate sludge. The synthesized HAp is extensively characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FTIR), providing in-depth insights into its properties. The investigation focuses on the impact of pH variation on crystallinity, morphology and thermal stability both with and without heat treatment at 900 °C. PLS analysis and Minitab software were used to optimize calcination temperature and pH conditions. About this analysis, ideal condition was pH = 11 and a temperature of 900 °C to synthesis optimal HAp with a crystallinity (Xc%) of 71.06% and a crystal size (Xs, nm) of 46.9. However, FTIR spectra revealed that all obtained pigments were of B type carbonated hydroxyapatites. According to SEM–EDS analysis, the as-prepared HAp nanostructure was found to be pure carbonated and similar in chemical composition to human bone with trace elements such as Na+, Mg2+, Si2+, Al3+, and F. Overall, the use of phosphate sludge for HAp biomaterial synthesis provides a cost-effective, environmentally friendly approach and circular economy perspective to produce a valuable nanostructure for eventual biomedical and environmental applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Druzian DM, Pavoski G, Espinosa DCR, Machado AK, Da-Silva WL (2022) Properties of a nanobioglass synthesized from rice husk for bone prostheses applications. Mater Chem Phys 277:125517. https://doi.org/10.1016/j.matchemphys.2021.125517

    Article  Google Scholar 

  2. Druzian DM et al (2023) Synthesis, characterization, cytotoxicity and antimicrobial activity of a nanostructured mineral clay. Ceram Int 49(19):31066–31076. https://doi.org/10.1016/j.ceramint.2023.07.051

    Article  Google Scholar 

  3. Amine M, Mesnaoui M, Abouliatim Y (2020) Effect of temperature and clay addition on the thermal behavior of phosphate sludge. Boletín de la Sociedad Española de Cerámica y Vidrio 60:194–204

    Google Scholar 

  4. Hakkou R, Benzaazoua M, Bussière B (2016) Valorization of phosphate waste rocks and sludge from the Moroccan phosphate mines: challenges and perspectives. Procedia Eng 138:110–118. https://doi.org/10.1016/j.proeng.2016.02.068

    Article  Google Scholar 

  5. Benbrik B et al (2020) Reusing phosphate sludge enriched by phosphate solubilizing bacteria as biofertilizer: growth promotion of Zea Mays. Biocatal Agric Biotechnol 30:101825. https://doi.org/10.1016/j.bcab.2020.101825

    Article  Google Scholar 

  6. Loutou M, Hajjaji M, Ait M, Mansori M, Favotto C, Hakkou R (2017) Phosphate sludge-based ceramics: microstructure and e ff ects of processing factors. J Build Eng 11:48–55. https://doi.org/10.1016/j.jobe.2017.04.002

    Article  Google Scholar 

  7. Haily E, Zari N, Bouhfid R, Qaiss A (2023) Natural fibers as an alternative to synthetic fibers in the reinforcement of phosphate sludge-based geopolymer mortar. J. Build. Eng. 67:105947. https://doi.org/10.1016/j.jobe.2023.105947

    Article  Google Scholar 

  8. Loutou M, Hajjaji M, Mansori M, Favotto C, Hakkou R (2016) Heated blends of phosphate waste: microstructure characterization, effects of processing factors and use as a phosphorus source for alfalfa growth. J Environ Manag 177:169–176. https://doi.org/10.1016/j.jenvman.2016.04.030

    Article  Google Scholar 

  9. Ayouch I, Barrak I, Kassab Z, El M, Barhoun A, Draoui K (2020) Improved recovery of cadmium from aqueous medium by alginate composite beads fi lled by bentonite and phosphate washing sludge. Colloids Surf A 604:125305. https://doi.org/10.1016/j.colsurfa.2020.125305

    Article  Google Scholar 

  10. Shoeib MA, Abdel-Gawad SA (2023) High performance nano hydroxyapatite coating on zinc for biomedical applications. J Mater Sci 58(2):740–756. https://doi.org/10.1007/s10853-022-08034-6

    Article  Google Scholar 

  11. López-Cuevas J, Vargas-Gutiérrez G, Rodríguez-Galicia JL, Rendón-Angeles JC (2018) Effect of some organic binders on the mechanical strength of hydroxyapatite-based biocements. MRS Adv 3(62):3729–3734. https://doi.org/10.1557/adv.2018.592

    Article  Google Scholar 

  12. Barua E, Deoghare AB, Chatterjee S, Sapkal P (2019) Effect of ZnO reinforcement on the compressive properties, in vitro bioactivity, biodegradability and cytocompatibility of bone scaffold developed from bovine bone-derived HAp and PMMA. Ceram Int 45(16):20331–20345. https://doi.org/10.1016/j.ceramint.2019.07.006

    Article  Google Scholar 

  13. Reichert J, Binner JGP (1996) An evaluation of hydroxyapatite-based filters for removal of heavy metal ions from aqueous solutions. J Mater Sci 31(5):1231–1241. https://doi.org/10.1007/BF00353102

    Article  Google Scholar 

  14. Imgharn A et al (2023) Insights into the performance and mechanism of PANI@Hydroxapatite-Montmorillonite for hexavalent chromium Cr(VI) detoxification. Surf Interfaces 36:102568. https://doi.org/10.1016/j.surfin.2022.102568

    Article  Google Scholar 

  15. Qi Y-C et al (2016) Hierarchical porous hydroxyapatite microspheres: synthesis and application in water treatment. J Mater Sci 51(5):2598–2607. https://doi.org/10.1007/s10853-015-9573-0

    Article  Google Scholar 

  16. Mobasherpour I, Salahi E, Pazouki M (2012) Comparative of the removal of Pb 2+, Cd 2+ and Ni 2+ by nano crystallite hydroxyapatite from aqueous solutions: adsorption isotherm study. Arab J Chem 5(4):439–446. https://doi.org/10.1016/j.arabjc.2010.12.022

    Article  Google Scholar 

  17. Mousa SM, Ammar NS, Ibrahim HA (2016) Removal of lead ions using hydroxyapatite nano-material prepared from phosphogypsum waste. J Saudi Chem Soc 20(3):357–365. https://doi.org/10.1016/j.jscs.2014.12.006

    Article  Google Scholar 

  18. Ali S et al (2022) “Nano-hydroxyapatite modified biochar : Insights into the dynamic adsorption and performance of lead(II) removal from aqueous solution. Environ Res 214:113827. https://doi.org/10.1016/j.envres.2022.113827

    Article  Google Scholar 

  19. Ajab H, Ali Khan AA, Nazir MS, Yaqub A, Abdullah MA (2019) Cellulose-hydroxyapatite carbon electrode composite for trace plumbum ions detection in aqueous and palm oil mill effluent: Interference, optimization and validation studies. Environ Res 176:108563. https://doi.org/10.1016/j.envres.2019.108563

    Article  Google Scholar 

  20. Fihri A, Len C, Varma RS, Solhy A (2017) Hydroxyapatite: a review of syntheses, structure and applications in heterogeneous catalysis. Coord Chem Rev 347:48–76. https://doi.org/10.1016/j.ccr.2017.06.009

    Article  Google Scholar 

  21. Renault F, Chabrière E, Andrieu JP, Dublet B, Masson P, Rochu D (2006) Tandem purification of two HDL-associated partner proteins in human plasma, paraoxonase (PON1) and phosphate binding protein (HPBP) using hydroxyapatite chromatography. J Chromatogr B Anal Technol Biomed Life Sci 836(1–2):15–21. https://doi.org/10.1016/j.jchromb.2006.03.029

    Article  Google Scholar 

  22. Cleland TP, Vashishth D (2015) Bone protein extraction without demineralization using principles from hydroxyapatite chromatography. Anal Biochem 472:62–66. https://doi.org/10.1016/j.ab.2014.12.006

    Article  Google Scholar 

  23. Jarudilokkul S, Tanthapanichakoon W, Boonamnuayvittaya V (2007) Synthesis of hydroxyapatite nanoparticles using an emulsion liquid membrane system. Colloids Surf A Physicochem Eng Asp 296(1–3):149–153. https://doi.org/10.1016/j.colsurfa.2006.09.038

    Article  Google Scholar 

  24. Chesley M, Kennard R, Roozbahani S, Kim SM, Kukk K, Mason M (2020) One-step hydrothermal synthesis with in situ milling of biologically relevant hydroxyapatite. Mater Sci Eng C 113:110962. https://doi.org/10.1016/j.msec.2020.110962

    Article  Google Scholar 

  25. Sanosh KP, Chu MC, Balakrishnan A, Kim TN, Cho SJ (2009) Preparation and characterization of nano-hydroxyapatite powder using sol-gel technique. Bull Mater Sci 32(5):465–470. https://doi.org/10.1007/s12034-009-0069-x

    Article  Google Scholar 

  26. Yeong KCB, Wang J, Ng SC (2001) Mechanochemical synthesis of nanocrystalline hydroxyapatite from CaO and CaHPO4. Biomaterials 22(20):2705–2712. https://doi.org/10.1016/S0142-9612(00)00257-X

    Article  Google Scholar 

  27. Zhang H, Zhou K, Li Z, Huang S (2009) Plate-like hydroxyapatite nanoparticles synthesized by the hydrothermal method. J Phys Chem Solids 70(1):243–248. https://doi.org/10.1016/j.jpcs.2008.10.011

    Article  Google Scholar 

  28. Giardina MA (2010) Synthesis of nanocrystalline hydroxyapatite from Ca(OH)2 and H3PO4 assisted by ultrasonic irradiation. Ceram Int 36:1961–1969. https://doi.org/10.1016/j.ceramint.2010.05.008

    Article  Google Scholar 

  29. Eiden-Aßmann S, Viertelhaus M, Heiß A, Hoetzer KA, Felsche J (2002) The influence of amino acids on the biomineralization of hydroxyapatite in gelatin. J Inorg Biochem 91(3):481–486. https://doi.org/10.1016/S0162-0134(02)00481-6

    Article  Google Scholar 

  30. Pham-Minh D, Lyczko N, Sebei H, Nzihou A, Sharrock P (2012) Synthesis of calcium hydroxyapatite from calcium carbonate and different orthophosphate sources: a comparative study. Mater Sci Eng B Solid-State Mater Adv Technol. 177(13):1080–1089. https://doi.org/10.1016/j.mseb.2012.05.007

    Article  Google Scholar 

  31. Pelin IM, Maier SS, Chitanu GC, Bulacovschi V (2009) Preparation and characterization of a hydroxyapatite-collagen composite as component for injectable bone substitute. Mater Sci Eng C 29(7):2188–2194. https://doi.org/10.1016/j.msec.2009.04.021

    Article  Google Scholar 

  32. Bo E (2019) Effect of the reaction temperature on the morphology of nanosized HAp. J Therm Anal Calorim 138:145–151. https://doi.org/10.1007/s10973-019-08255-z

    Article  Google Scholar 

  33. Kumar GS, Girija EK (2013) Flower-like hydroxyapatite nanostructure obtained from eggshell: a candidate for biomedical applications. Ceram Int 39(7):8293–8299. https://doi.org/10.1016/j.ceramint.2013.03.099

    Article  Google Scholar 

  34. Chen J, Wen Z, Zhong S, Wang Z, Wu J, Zhang Q (2015) Synthesis of hydroxyapatite nanorods from abalone shells via hydrothermal solid-state conversion. Mater Des 87:445–449. https://doi.org/10.1016/j.matdes.2015.08.056

    Article  Google Scholar 

  35. Wang Z, Jiang S, Zhao Y, Zeng M (2019) Synthesis and characterization of hydroxyapatite nano-rods from oyster shell with exogenous surfactants. Mater Sci Eng C 105:110102. https://doi.org/10.1016/j.msec.2019.110102

    Article  Google Scholar 

  36. Ferro AC, Guedes M (2019) Mechanochemical synthesis of hydroxyapatite using cuttlefish bone and chicken eggshell as calcium precursors. Mater Sci Eng C 97:124–140. https://doi.org/10.1016/j.msec.2018.11.083

    Article  Google Scholar 

  37. Zuliantoni Z, Suprapto W, Setyarini PH, Gapsari F (2022) Extraction and characterization of snail shell waste hydroxyapatite. Results Eng. 14:100390. https://doi.org/10.1016/j.rineng.2022.100390

    Article  Google Scholar 

  38. Surya P, Nithin A, Sundaramanickam A, Sathish M (2021) Synthesis and characterization of nano-hydroxyapatite from Sardinella longiceps fish bone and its effects on human osteoblast bone cells. J Mech Behav Biomed Mater 119:104501. https://doi.org/10.1016/j.jmbbm.2021.104501

    Article  Google Scholar 

  39. Azzallou R et al (2022) Bovine bone-derived natural hydroxyapatite-supported ZnCl2 as a sustainable high efficiency heterogeneous biocatalyst for synthesizing amidoalkyl naphthols. J Phys Chem Solids 163:110533. https://doi.org/10.1016/j.jpcs.2021.110533

    Article  Google Scholar 

  40. Bensalah H, Bekheet MF, Alami Younssi S, Ouammou M, Gurlo A (2018) Hydrothermal synthesis of nanocrystalline hydroxyapatite from phosphogypsum waste. J Environ Chem Eng 6(1):1347–1352. https://doi.org/10.1016/j.jece.2018.01.052

    Article  Google Scholar 

  41. Lin Y-W, Peng S-Y, Lee W-H, Lin Y-Y, Hung M-J, Lin K-L (2023) Characterization of Cu2+ adsorption for eco-hydroxyapatite derived from limestone sludge via hydrothermal synthesis. J Mater Cycles Waste Manag 25(2):1069–1081. https://doi.org/10.1007/s10163-023-01593-z

    Article  Google Scholar 

  42. Klinkaewnarong J, Utara S (2018) Ultrasonic-assisted conversion of limestone into needle-like hydroxyapatite nanoparticles. Ultrason Sonochem 46:18–25. https://doi.org/10.1016/j.ultsonch.2018.04.002

    Article  Google Scholar 

  43. Brahimi S et al (2021) Preparation and characterization of biocomposites based on chitosan and biomimetic hydroxyapatite derived from natural phosphate rocks. Mater Chem Phys 276:2022. https://doi.org/10.1016/j.matchemphys.2021.125421

    Article  Google Scholar 

  44. Elmourabit M et al (2023) Valorization of phosphate sludge: synthesis of anti-corrosion pigments, physicochemical study and application to the protection of mild steel in a 3% NaCl medium. Waste Biomass Valoriz. https://doi.org/10.1007/s12649-023-02034-6

    Article  Google Scholar 

  45. Rodríguez-carvajal J (2014) Magnetic structures from powder and single crystal data. Inst. Laue-Langevin, pp 1–7

    Google Scholar 

  46. El Asri S et al (2009) A novel process for the fabrication of nanoporous apatites from Moroccan phosphate rock. Colloids Surf A Physicochem Eng Asp 350(1–3):73–78. https://doi.org/10.1016/j.colsurfa.2009.09.006

    Article  Google Scholar 

  47. Shavandi A, Bekhit AEDA, Ali A, Sun Z (2015) Synthesis of nano-hydroxyapatite (nHA) from waste mussel shells using a rapid microwave method. Mater Chem Phys 149:607–616. https://doi.org/10.1016/j.matchemphys.2014.11.016

    Article  Google Scholar 

  48. Goh KW, Johan MR, Wong YH (2018) Enhanced structural properties of In2O3 nanoparticles at lower calcination temperature synthesised by co-precipitation method. Micro Nano Lett 13(2):270–275. https://doi.org/10.1049/mnl.2017.0540

    Article  Google Scholar 

  49. Matsumoto T, Tamine KI, Kagawa R, Hamada Y, Okazaki M, Takahashi J (2006) Different behavior of implanted hydroxyapatite depending on morphology, size and crystallinity. J Ceram Soc Jpn 114(1333):760–762. https://doi.org/10.2109/jcersj.114.760

    Article  Google Scholar 

  50. Kumar GS, Thamizhavel A, Girija EK (2012) Microwave conversion of eggshells into flower-like hydroxyapatite nanostructure for biomedical applications. Mater Lett 76:198–200. https://doi.org/10.1016/j.matlet.2012.02.106

    Article  Google Scholar 

  51. Ofudje EA, Rajendran A, Adeogun AI, Idowu MA, Kareem SO, Pattanayak DK (2018) Synthesis of organic derived hydroxyapatite scaffold from pig bone waste for tissue engineering applications. Adv Powder Technol 29(1):1–8. https://doi.org/10.1016/j.apt.2017.09.008

    Article  Google Scholar 

  52. Yelten-Yilmaz A, Yilmaz S (2018) Wet chemical precipitation synthesis of hydroxyapatite (HA) powders. Ceram Int 44(8):9703–9710. https://doi.org/10.1016/j.ceramint.2018.02.201

    Article  Google Scholar 

  53. Esen Z, Bor Ş (2007) Processing of titanium foams using magnesium spacer particles. Scr Mater 56(5):341–344. https://doi.org/10.1016/j.scriptamat.2006.11.010

    Article  Google Scholar 

  54. Okada M, Furuzono T (2012) Hydroxylapatite nanoparticles: Fabrication methods and medical applications. Sci Technol Adv Mater 13(6):064103. https://doi.org/10.1088/1468-6996/13/6/064103

    Article  Google Scholar 

  55. Mohd Pu’ad NAS, Koshy P, Abdullah HZ, Idris MI, Lee TC (2019) Syntheses of hydroxyapatite from natural sources. Heliyon 5(5):e01588. https://doi.org/10.1016/j.heliyon.2019.e01588

    Article  Google Scholar 

  56. Gao J, Wang M, Shi C, Wang L, Zhu Y, Wang D (2017) A facile green synthesis of trace Si, Sr and F multi-doped hydroxyapatite with enhanced biocompatibility and osteoconduction. Mater Lett 196:406–409. https://doi.org/10.1016/j.matlet.2017.03.054

    Article  Google Scholar 

  57. Rodríguez-Lugo V et al (2018) Wet chemical synthesis of nanocrystalline hydroxyapatite flakes: effect of pH and sintering temperature on structural and morphological properties. R Soc Open Sci 5(8):180962. https://doi.org/10.1098/rsos.180962

    Article  Google Scholar 

  58. Panda RN, Hsieh MF, Chung RJ, Chin TS (2003) FTIR, XRD, SEM and solid state NMR investigations of carbonate-containing hydroxyapatite nano-particles synthesized by hydroxide-gel technique. J Phys Chem Solids 64(2):193–199. https://doi.org/10.1016/S0022-3697(02)00257-3

    Article  Google Scholar 

  59. Munarin F et al (2015) Micro- and nano-hydroxyapatite as active reinforcement for soft biocomposites. Int J Biol Macromol 72:199–209. https://doi.org/10.1016/j.ijbiomac.2014.07.050

    Article  Google Scholar 

  60. Lettieri Barbato D, Baldelli S, Pagliei B, Aquilano K, Ciriolo MR (2012) Caloric restriction and the nutrient-sensing PGC-1α in mitochondrial homeostasis: New perspectives in neurodegeneration. Int J Cell Biol 2012:1–11. https://doi.org/10.1155/2012/759583

    Article  Google Scholar 

  61. Paul S, Pal A, Roy A, Bodhak S (2017) Effect of trace elements on the sintering effect of fish scale derived hydroxyapatite and its bioactivity. Ceram Int 43:15678–15684. https://doi.org/10.1016/j.ceramint.2017.08.127

    Article  Google Scholar 

  62. Barua E, Das A, Pamu D, Deoghare AB, Deb P, Das S (2019) Effect of thermal treatment on the physico-chemical properties of bioactive hydroxyapatite derived from caprine bone bio-waste. Ceram Int 45(17):23265–23277. https://doi.org/10.1016/j.ceramint.2019.08.023

    Article  Google Scholar 

  63. Amirthalingam N, Deivarajan T, Paramasivam M (2019) Mechano chemical synthesis of hydroxyapatite using dolomite. Mater Lett 254:379–382. https://doi.org/10.1016/j.matlet.2019.07.118

    Article  Google Scholar 

  64. Klinkaewnarong J, Utara S (2018) Ultrasonic-assisted conversion of limestone into needle-like hydroxyapatite nanoparticles. Ultrason Sonochem. https://doi.org/10.1016/j.ultsonch.2018.04.002

    Article  Google Scholar 

  65. Wei K et al (2021) Effect of pH on the properties of eggshell-derived hydroxyapatite bioceramic synthesized by wet chemical method assisted by microwave irradiation. Ceram Int 47(7):8879–8887. https://doi.org/10.1016/j.ceramint.2020.12.009

    Article  Google Scholar 

  66. Bensalah H, Bekheet MF, Alami S, Ouammou M (2018) Hydrothermal synthesis of nanocrystalline hydroxyapatite from phosphogypsum waste. J Environ Chem Eng 6(1):1347–1352. https://doi.org/10.1016/j.jece.2018.01.052

    Article  Google Scholar 

Download references

Acknowledgements

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

ME: Data curation, Formal analysis, Writing – original draft. YZ: Data curation, Formal analysis. BA: Formal analysis, Investigation, Resources. IA: Methodology, Visualization, Resources, Writing – original draft. AAA: Supervision, Conceptualization, Writing-review & editing. IR: Formal Analysis; Writing–original draft; Visualization. DB: Writing–review & editing; Visualization. KD: Supervision, Validation, Writing – review & editing. FC: Supervision, Validation, Conceptualization, Methodology, Writing – review & editing.

Corresponding author

Correspondence to Mohammad Elmourabit.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

The authors declare that the manuscript does not have studies on human subjects, human data or tissue, or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elmourabit, M., Zarki, Y., Arfoy, B. et al. Phosphate sludge valorization as new alternative precursor for carbonated hydroxyapatite nanostructures: synthesis and characterization. J Mater Cycles Waste Manag 26, 602–619 (2024). https://doi.org/10.1007/s10163-023-01863-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-023-01863-w

Keywords

Navigation