Skip to main content
Log in

Removal of Hg2+ ions by adsorption using (TiO2@MnO2)-NPs nanocomposite

  • SPECIAL FEATURE: ORIGINAL ARTICLE
  • Mercury cycles and their management
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Waste water contaminated with inorganic mercury is considered a serious environmental problem, mainly due to the hazardous effects this contaminant causes on human health. Thus, the present work aims to evaluate the potentiality of the bimetallic nanoadsorbent ((TiO2@MnO2)-NPs) obtained from the biosynthesis in the mercury ions (Hg2+) removal by adsorption. (TiO2@MnO2)-NPs was synthesized from Aloe vera and Matricaria recutita extracts. The nanoadsorbent was characterized by XRD, ZP, and pHZCP. The results confirmed the production of a nanoadsorbent with an average particle diameter around 25 nm. (TiO2@MnO2)-NPs showed negative surface charge (− 11.32 mV), and pHZCP ≈ 7.65. Regarding Hg2+ adsorption, the removal was 86.15%. Adsorption data were fitted by Khan (R2 0.96, qe = 28.07 mg g−1) and intraparticle diffusion (R2 0.97, qt = 28.84 mg g−1) models. Thermodynamics suggested the adsorption is exothermic process (ΔH = − 73.93 kJ mol−1), with decrease of the randomness (ΔS = 0.24 kJ mol−1 K−1) in the solid–liquid interface, being favorable under temperature below 298.15 K (ΔG = − 1.16 kJ mol−1). (TiO2@MnO2)-NPs resulted in more than 80% Hg2+ removal after six cycles of adsorption. Therefore, nanoparticles containing titanium and manganese can be effectively used for the adsorption of Hg2+ ions, collaborating with the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6.
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Fallatah AM, Shah HUR, Ahmad K, Ashfaq M, Rauf A, Muneer M, Ibrahim MM, El-Bahy ZM, Shahzad A, Babras A (2022) Rational synthesis and characterization of highly water stable MOF@GO composite for efficient removal of mercury (Hg2+) from water. Heliyon 8:e10936–e10944. https://doi.org/10.1016/j.heliyon.2022.e10936

    Article  Google Scholar 

  2. Cao Q, Cheng Y, Kusakabe T, Quian Y, Liang H, Takaoka M (2023) Mercury emission from underground coal fires: a typical case in China. J Mater Cycles Waste Manag. https://doi.org/10.1007/s10163-023-01616-9

    Article  Google Scholar 

  3. Jia L, Cheng P, Yu Y, Wang Y-I, Chen S-H, Wang C-X, Wang J-C, Zhang J-C, Fan B-G, Jian Y (2023) Study on the co-combustion process and mercury emission characteristics of sewage sludge-coal slime coupled fuel. J Mater Cycles Waste Manag. https://doi.org/10.1007/s10163-023-01612-z

    Article  Google Scholar 

  4. Malakahmad A, Hasani A, Eisakhani M, Isa MH (2011) Sequencing batch reactor (SBR) for the removal of Hg2+ and Cd2+ from synthetic petrochemical factory wastewater. J Hazard Mater 191:118–125. https://doi.org/10.1016/j.jhazmat.2011.04.045

    Article  Google Scholar 

  5. Pepi M, Gaggi C, Bernardini E, Focardi S, Lobianco A, Ruta M, Nicolardi V, Volterrani M, Gasperini S, Trinchera G, Renzi P, Gabellini M, Focardi SE (2011) Mercury-resistant bacterial strains Pseudomonas and Psychrobacter spp. isolated from sediments of Orbetello Lagoon (Italy) and their possible use in bioremediation processes. Int Biodeterior Biodegrad 65:85–91. https://doi.org/10.1016/j.ibiod.2010.09.006

    Article  Google Scholar 

  6. Park JD, Zheng W (2012) Human exposure and health effects of inorganic and elemental mercury. J Prev Med Public Health 45:344–352. https://doi.org/10.3961/jpmph.2012.45.6.344

    Article  Google Scholar 

  7. Fatullayeva S, Tagiyev D, Zeynalov N (2021) A review on enterosorbents and their application in clinical practice: Removal of toxic metals. Colloid Interface Sci Commun 45:100545–100555. https://doi.org/10.1016/j.colcom.2021.100545

    Article  Google Scholar 

  8. Green-Ruiz C (2006) Mercury(II) removal from aqueous solutions by nonviable Bacillus sp. from a tropical estuary. Bioresour Technol 97:1907–1911. https://doi.org/10.1016/j.biortech.2005.08.014

    Article  Google Scholar 

  9. Anna M, Andrey F, Eugenia V (2022) Comparison of the performance of different methods to stabilize mercury-containing waste. J Mater Cycles Waste Manag 24:1134–1139. https://doi.org/10.1007/s10163-022-01386-w

    Article  Google Scholar 

  10. Ishimori H, Hasegawa R, Ishigaki T (2021) Long-term leaching and volatilization behavior of stabilized and solidified mercury metal waste. J Mater Cycles Waste Manag 23:741–754. https://doi.org/10.1007/s10163-020-01170-8

    Article  Google Scholar 

  11. Zhao T, Wang X, Yang X, Nie Z, Huang Q (2017) Thermogravimetric and XRD study of the effects of chloride salts on the thermal decomposition of mercury compounds. J Mater Cycles Waste Manag 19:712–717. https://doi.org/10.1007/s10163-016-0468-1

    Article  Google Scholar 

  12. Liu H, Yuan B, Zhang B, Hu H, Li A, Luo G, Yao H (2014) Removal of mercury from flue gas using sewage sludge-based adsorbents. J Mater Cycles Waste Manag 16:101–107. https://doi.org/10.1007/s10163-013-0145-6

    Article  Google Scholar 

  13. Javed MM, Haq IU, Shahbaz F (2007) Biosorption of mercury from industrial effluent by Fungal consortia. Bioremediat J 11:149–153. https://doi.org/10.1080/10889860701548705

    Article  Google Scholar 

  14. Pinto E, Sigaud-Kutner TCS, Zajac MAL, Okamoto OK, Morse D, Colepicolo P (2003) Heavy metal-induced oxidative stress in algae. J Phycol 39:1008–1018. https://doi.org/10.1111/j.0022-3646.2003.02-193.x

    Article  Google Scholar 

  15. Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31:346–356. https://doi.org/10.1016/j.biotechadv.2013.01.003

    Article  Google Scholar 

  16. Faramarzi MA, Sadighi A (2013) Insights into biogenic and chemical production of inorganic nanomaterials and nanostructures. Adv Colloid Interface Sci 189:1–20. https://doi.org/10.1016/j.cis.2012.12.001

    Article  Google Scholar 

  17. Xie Y, Ren L, Zhu X, Gou X, Chen S (2018) Physical and chemical treatments for removal of perchlorate from water—a review. Process Saf Environ Prot 116:180–198. https://doi.org/10.1016/j.psep.2018.02.009

    Article  Google Scholar 

  18. Bahşi ZB, Oral AY (2007) Effects of Mn and Cu doping on the microstructures and optical properties of sol–gel derived ZnO thin films. Opt Mater 29:672–678. https://doi.org/10.1016/j.optmat.2005.11.016

    Article  Google Scholar 

  19. Kunchala RK, Pushpendra KR, Naidu BS (2022) High surface area MnO2 nanomaterials synthesized by selective cation dissolution for efficient water oxidation. Sustain Energy Fuels 6:766–777. https://doi.org/10.1039/D1SE01080H

    Article  Google Scholar 

  20. Štengl V, Králová D, Opluštil F, Němec T (2012) Mesoporous manganese oxide for warfare agents degradation. Microporous Mesoporous Mater 156:224–232. https://doi.org/10.1016/j.micromeso.2012.02.031

    Article  Google Scholar 

  21. Hao L, Wang Z, Xing B (2009) Effect of sub-acute exposure to TiO2 nanoparticles on oxidative stress and histopathological changes in Juvenile Carp (Cyprinus carpio). J Environ Sci 21:1459–1466. https://doi.org/10.1016/s1001-0742(08)62440-7

    Article  Google Scholar 

  22. Hossain F, Perales-Perez OJ, Hwang S, Román F (2014) Antimicrobial nanomaterials as water disinfectant: applications, limitations and future perspectives. Sci Total Environ 466–467:1047–1059. https://doi.org/10.1016/j.scitotenv.2013.08.009

    Article  Google Scholar 

  23. Schaumann GE, Philippe A, Bundschuh M, Metreveli G, Klitzke S, Rakcheev D, Grün A, Kumahor SK, Kühn M, Baumann T, Lang F, Manz W, Schulz R, Vogel HJ (2015) Understanding the fate and biological effects of Ag- and TiO2-nanoparticles in the environment: the quest for advanced analytics and interdisciplinary concepts. Sci Total Environ 535:3–19. https://doi.org/10.1016/j.scitotenv.2014.10.035

    Article  Google Scholar 

  24. Camargo PHC, Satyanarayana KG, Wypych F (2009) Nanocomposites: synthesis, structure, properties and new application opportunities. Mat Res 12:1–39. https://doi.org/10.1590/S1516-14392009000100002

    Article  Google Scholar 

  25. Venkatesh R, Sekaran PR, Udayakumar K, Jagadeesh D, Raju K, Bayu MB (2022) Adsorption and photocatalytic degradation properties of bimetallic Ag/MgO/biochar nanocomposites. Adsorp Sci Technol 2022:1–14. https://doi.org/10.1155/2022/3631584

    Article  Google Scholar 

  26. Li R, Wang JJ, Zhou B, Zhang Z, Liu S, Lei S, Xiao R (2017) Simultaneous capture removal of phosphate, ammonium and organic substances by MgO impregnated biochar and its potential use in swine wastewater treatment. J Clean Prod 147:96–107. https://doi.org/10.1016/j.jclepro.2017.01.069

    Article  Google Scholar 

  27. Bendahou D, Bendahou A, Grohens Y, Kaddami H (2015) New nanocomposite design from zeolite and poly(lactic acid). Ind Crops Prod 72:107–118. https://doi.org/10.1016/j.indcrop.2014.12.055

    Article  Google Scholar 

  28. Wang C, Murugadoss V, Kong J, He Z, Mai X, Shao Q, Chen Y, Guo L, Liu C, Angaiah S, Guo Z (2018) Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding. Carbon 140:696–733. https://doi.org/10.1016/j.carbon.2018.09.006

    Article  Google Scholar 

  29. Ahmed SF, Mofijur M, Rafa N, Chowdhury AT, Chowdhury S, Nahrin M, Islam ABMS, Ong HC (2022) Green approaches in synthesizing nanomaterials for environmental nanobioremediation: technological advancements, applications, benefits and challenges. Environ Res 204:111967–111991. https://doi.org/10.1016/j.envres.2021.111967

    Article  Google Scholar 

  30. Yu C, Tang J, Liu F, Chen Y (2021) Green synthesized nanosilver-biochar photocatalyst for persulfate activation under visible-light illumination. Chemosphere. https://doi.org/10.1016/j.chemosphere.2021.131237

    Article  Google Scholar 

  31. Ashfaq M, Talreja N, Chauhan D, Rodríguez CA, Mera AC, Mangalaraja RV (2021) A novel bimetallic (Fe/Bi)-povidone-iodine micro-flowers composite for photocatalytic and antibacterial applications. J Photochem Photobiol B Biol 219:112204–112214. https://doi.org/10.1016/j.jphotobiol.2021.112204

    Article  Google Scholar 

  32. Tippayawat P, Phromviyo N, Boueroy P, Chompoosor A (2016) Green synthesis of silver nanoparticles in Aloe vera plant extract prepared by a hydrothermal method and their synergistic antibacterial activity. PeerJ 4:2589–2598. https://doi.org/10.7717/peerj.2589

    Article  Google Scholar 

  33. Uddin I, Ahmad K, Khan AA, Kazmi MA (2017) Synthesis of silver nanoparticles using Matricaria recutita (Babunah) plant extract and its study as mercury ions sensor. Sens Bio-Sens Res 16:62–67. https://doi.org/10.1016/j.sbsr.2017.11.005

    Article  Google Scholar 

  34. Muraro PCL, Wouters RD, Pavoski G, Espinosa DCR, Ruiz YPM, Galembeck A, Rech VC, Da Silva WL (2023) Ag/TiNPS nanocatalyst: biosynthesis, characterization and photocatalytic activity. J Photochem Photobiol A 439:114598–114603. https://doi.org/10.1016/j.jphotochem.2023.114598

    Article  Google Scholar 

  35. Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Progr 22:577–583. https://doi.org/10.1021/bp0501423

    Article  Google Scholar 

  36. Malik MA, Alshehri AA, Abomuti MA, Danish EY, Patel R (2021) Bioengineered matricaria recutita extract-assisted palladium nanoparticles for the congo red dye degradation and catalytic reduction of 4-nitrophenol to 4-aminophenol. Toxics 9:103–112. https://doi.org/10.3390/toxics9050103

    Article  Google Scholar 

  37. Manikanika CL (2023) Photo-Degradation of dyes and drugs using aloe vera synthesized zinc oxide nanoparticles—a review. Mater Today Proc 72:1613–1617. https://doi.org/10.1016/j.matpr.2022.09.413

    Article  Google Scholar 

  38. El-Mehdia E-A, Noureddine E, El Barnossi A, Bakkari F, Hmamou A, Bouia A (2021) Wild chamomile (Matricaria recutita L) from the taounate province, morocco: extraction and valorisation of the antibacterial activity of its essential oils. Trop J Nat Prod Res 5:883–888. https://doi.org/10.26538/tjnpr/v5i5.15

    Article  Google Scholar 

  39. Ashok CH, Venkateswara RK, Shilpa CCH (2015) Synthesis and characterization of MgO/TiO2 nanocomposites. J Nanomed Nanotechnol 6:1000329–1000333. https://doi.org/10.4172/2157-7439.1000329

    Article  Google Scholar 

  40. Manjula R, Thenmozhi M, Thilagavathi S, Srinivasan R, Kathirvel A (2020) Green synthesis and characterization of manganese oxide nanoparticles from Gardenia resinífera leaves. Mater Today Proc 26:3559–3563. https://doi.org/10.1016/J.MATPR.2019.07.396

    Article  Google Scholar 

  41. Ahmad W, Mehmoodb U, Al-Ahmed A, Al-Sulaiman FA, Aslam MZ, Kamal MS, Shawabkeh RA (2016) Synthesis of zinc oxide/titanium dioxide (ZnO/TiO2) nanocomposites by wet incipient wetness impregnation method and preparation of ZnO/TiO2 paste using poly(vinylpyrrolidone) for efficient dye-sensitized solar cells. Electrochim Acta 222:473–480. https://doi.org/10.1016/j.electacta.2016.10.200

    Article  Google Scholar 

  42. Rosa C, Auriemma F (2014) Crystals and crystallinity in polymers: diffraction analysis of ordered and disordered crystals. Wiley, Hoboken

    Google Scholar 

  43. Stavrinou A, Aggelopoulos CA, Tsakiroglou CD (2018) Exploring the adsorption mechanisms of cationic and anionic dyes onto agricultural waste peels of banana, cucumber and potato: adsorption kinetics and equilibrium isotherms as a tool. J Environ Chem Eng 6:6958–6970. https://doi.org/10.1016/j.jece.2018.10.063

    Article  Google Scholar 

  44. Barthen R, Sulonen MLK, Peräniemi S, Jain R, Lakaniemi AM (2022) Removal and recovery of metal ions from acidic multi-metal mine water using waste digested activated sludge as biosorbent. Hydrometallurgy 207:105770–105780. https://doi.org/10.1016/j.hydromet.2021.105770

    Article  Google Scholar 

  45. Nascimento FP, Junior BBN, Cardoso LAM, De Albuquerque RVT, Oliveira-Neto NM (2018) An approach to the kinetics and thermodynamics of elementary chemical reactions using a stochastic model. Quim Nova 41:1083–1097. https://doi.org/10.21577/0100-4042.20170241

    Article  Google Scholar 

  46. Shahmohammadi-Kalalagh S, Babazadeh H (2014) Isotherms for the sorption of zinc and copper onto kaolinite: comparison of various error functions. Int J Environ Sci Tech 11:111–118. https://doi.org/10.1007/s13762-013-0260-x

    Article  Google Scholar 

  47. Silva TP, Raubach CW, Ullmann MA, Carreño NLV, Cava S, Gonçalves MRF, Nunes MR (2011) Development and characterization of nanocoated particles based on halloysite nanoclay. Cerâmica 57:115–121. https://doi.org/10.1590/S0366-69132011000100015

    Article  Google Scholar 

  48. Dahmani R, Grubisic S, Djordjevic I, Yaghlane SB, Boughdiri S, Chambaud G, Hochlaf M (2021) In silico design of a new Zn-triazole based metal-organic framework for CO2 and H2O adsorption. J Chem Phys 154:1–21. https://doi.org/10.1063/5.0037594

    Article  Google Scholar 

  49. Neustadter HE, Bacigalupi RJ (1967) Dependence of adsorption properties on surface structure for body-centered-cubic substrates. Surf Sci 6:243–260. https://doi.org/10.1016/0039-6028(67)90007-6

    Article  Google Scholar 

  50. Sopha H, Kashimbetova A, Hromadko L, Saldan I, Celko L, Montufar EB, Macak JM (2021) Anodic TiO2 nanotubes on 3D-printed titanium meshes for photocatalytic applications. Nano Lett 21:8701–8706. https://doi.org/10.1021/acs.nanolett.1c02815

    Article  Google Scholar 

  51. Wang D, Xiao L, Luo Q, Li X, An J, Duan Y (2011) Highly efficient visible light TiO2 photocatalyst prepared by sol-gel method at temperatures lower than 300 °C. J Hazard Mater 192:150–159. https://doi.org/10.1016/j.jhazmat.2011.04.110

    Article  Google Scholar 

  52. Ogbodo NO, Asadu CO, Ezema CA, Onoh MI, Elijah OC, Ike IS, Onoghwarite OE (2021) Preparation and Characterization of activated carbon from agricultural waste (Musa-paradisiaca peels) for the remediation of crude oil contaminated water. J Hazard Mater. https://doi.org/10.1016/j.hazadv.2021.100010

    Article  Google Scholar 

  53. Zhang X, Wang X (2015) Adsorption and desorption of nickel(II) ions from aqueous solution by a lignocellulose/montmorillonite nanocomposite. PLoS ONE 10:1–21. https://doi.org/10.1371/journal.pone.0117077

    Article  Google Scholar 

  54. Dos Santos LN, Santos AS, Dantas KGF, Ferreira NR (2022) Adsorption of Cu(II) ions present in the distilled beverage (sugar cane spirit) using chitosan derived from the shrimp shell. Polymers 14:573–588. https://doi.org/10.3390/polym14030573

    Article  Google Scholar 

  55. Kazemi-Beydokhti A, Namaghi HA, Asgarkhani MAH, Heris SZ (2015) Prediction of stability and thermal conductivity of SnO2 nanofluid via statistical method and an artificial neural network. Braz J Chem Eng 32:903–917. https://doi.org/10.1590/0104-6632.20150324s00003518

    Article  Google Scholar 

  56. Aghdam K, Panahi HA, Alaei E, Hasani AH, Moniri E (2016) Preparation of functionalized graphene oxide and its application as a nanoadsorbent for Hg2+ removal from aqueous solution. Environ Monit Assess 188:223–245. https://doi.org/10.1007/s10661-016-5226-2

    Article  Google Scholar 

  57. Priya T, Mishra BK, Prasad MNV (2020) Chapter 2—Physico-chemical techniques for the removal of disinfection by-products precursors from water. In: Prasad MNV (ed) Disinfection byproducts in drinking water: detection and treatment, 1st edn. Butterworth-Heinemann Elsevier Ltd, Oxford, pp 23–58

    Chapter  Google Scholar 

  58. Sereshti H, Gaikani H, Nodeh HR (2017) The effective removal of mercury ions (Hg2+) from water using cadmium sulfide nanoparticles doped in polycaprolactam nanofibers: kinetic and equilibrium studies. J Iran Chem Soc 15:743–751. https://doi.org/10.1007/s13738-017-1274-y

    Article  Google Scholar 

  59. Khan AR, Ataullah R, Al-Haddad A (1997) Equilibrium adsorption studies of some aromatic pollutants from dilute aqueous solutions on activated carbon at different temperatures. J Colloid Interface Sci 194:154–165. https://doi.org/10.1006/jcis.1997.5041

    Article  Google Scholar 

  60. Khorshid N, Azadmehr AR (2016) Characterization and adsorption properties of oxalate-loaded hematite composite for Cd(II) and Pb(II) adsorption: equilibrium models, thermodynamic, and kinetic studies. Sep Sci Technol 51:2122–2137. https://doi.org/10.1080/01496395.2016.1205610

    Article  Google Scholar 

  61. Cruz GJF, Gómez MM, Solis J, Rimaycuna J, Solis RL, Cruz JF, Rathnayake B, Keiski RL (2018) Composites of ZnO nanoparticles and biomass based activated carbon: adsorption, photocatalytic and antibacterial capacities. Water Sci Technol 2:492–508. https://doi.org/10.2166/wst.2018.176

    Article  Google Scholar 

  62. Wu FC, Tseng RL, Juang RS (2009) Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. J Chem Eng 153:1–8. https://doi.org/10.1016/j.cej.2009.04.042

    Article  Google Scholar 

  63. Campos NF, Barbosa CNBM, Rodríguez-Díaz JM, Duarte MMMB (2018) Removal of naphthenic acids using activated charcoal: kinetic and equilibrium studies. Adsorp Sci Technol 36:1045–1421. https://doi.org/10.1177/0263617418773844

    Article  Google Scholar 

  64. Tien C (2019) Introduction of adsorption—basics, analysis and applications. Elsevier, Amsterdam

    Google Scholar 

  65. Chowdhury S, Mishra R, Saha P, Kushwaha P (2011) Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk. Desalination 265:159–168. https://doi.org/10.1016/j.desal.2010.07.047

    Article  Google Scholar 

  66. Jnr MH, Spiff IA (2005) Effect of 2-mercaptoethanoic acid treatment of fluted pumpkin waste (Telfairia occidentalis Hook. F.) on the sorption of Ni2+ ions from aqueous solutions. J Sci Ind Res 64:613–620

    Google Scholar 

  67. Regalbuto JR, Agashe K, Navada A, Bricker ML, Chen Q (1998) A scientific description of Pt adsorption onto alumina. Stud Surf Sci Catal 118:147–156. https://doi.org/10.1016/S0167-2991(98)80177-8

    Article  Google Scholar 

  68. Clark LK (2017) Caregivers’ perceptions of emergent literacy programming in public libraries in relation to the National Research Councils’ guidelines on quality environments for children. Lib Inf Sci Res 39:107–115. https://doi.org/10.1016/j.lisr.2017.04.001

    Article  Google Scholar 

  69. Pavithra KC, SundarRajan P, Kumar PS, Rangasamy G (2023) Mercury sources, contaminations, mercury cycle, detection and treatment techniques: a review. Chemosphere. https://doi.org/10.1016/j.chemosphere.2022.137314

    Article  Google Scholar 

  70. Mohammadnia E, Hadavifar M, Veisi H (2019) Kinetics and thermodynamics of mercury adsorption onto thiolated graphene oxide nanoparticle. Polyhedron 173:114139–114148. https://doi.org/10.1016/j.poly.2019.114139

    Article  Google Scholar 

  71. Fakhri A (2015) Investigation of mercury(II) adsorption from aqueous solution onto copper oxide nanoparticles: optimization using response surface methodology. Process Saf Environ Prot 93:1–8. https://doi.org/10.1016/j.psep.2014.06.003

    Article  Google Scholar 

  72. Dou B, Dupont V, Pan W, Chen B (2011) Removal of aqueous toxic Hg(II) by synthesized TiO2 nanoparticles and TiO2/montmorillonite. J Chem Eng 166:631–638. https://doi.org/10.1016/j.cej.2010.11.035

    Article  Google Scholar 

  73. Bahiraei A, Behin J (2020) Sonochemical immobilization of MnO2 nanoparticles on NaP-zeolite for enhanced Hg (II) adsorption from water. J Environ Chem Eng 8:103790–103802. https://doi.org/10.1016/j.jece.2020.103790

    Article  Google Scholar 

  74. Marimón-Bolívara W, Tejeda-Benítezb L, Herrera AP (2018) Removal of mercury(II) from water using magnetic nanoparticles coated with amino organic ligands and yam peel biomass. Environ Nanotechnol Monit Manag 10:486–493. https://doi.org/10.1016/j.enmm.2018.10.001

    Article  Google Scholar 

  75. Gil-Díaz M, Rodríguez-Alonso J, Maffiotte CA, Baragaño D, Millán R, Lobo MC (2021) Iron nanoparticles are efficient at removing mercury from polluted waters. J Clean Prod 315:128272–128286. https://doi.org/10.1016/j.jclepro.2021.128272

    Article  Google Scholar 

  76. Wang L, Xu H, Qiu Y, Liu X, Huang W, Yan N, Qu Z (2020) Utilization of Ag nanoparticles anchored in covalent organic frameworks for mercury removal from acidic waste water. J Hazard Mater 389:121824–121834. https://doi.org/10.1016/j.jhazmat.2019.121824

    Article  Google Scholar 

  77. Anirudhan TS, Jalajamony S, Sreekumari SS (2012) Adsorption of heavy metal ions from aqueous solutions by amine and carboxylate functionalised bentonites. Appl Clay Sci 65–66:67–71. https://doi.org/10.1016/j.clay.2012.06.005

    Article  Google Scholar 

  78. Esfandiyari T, Nasirizadeh N, Dehghani M, Ehrampoosh MH (2017) Graphene oxide-based carbon composite as adsorbent for Hg removal: preparation, characterization, kinetics and isotherm studies. Chin J Chem Eng 25:1170–1175. https://doi.org/10.1016/j.cjche.2017.02.006

    Article  Google Scholar 

  79. Eloussaief M, Sdiri A, Benzina M (2013) Modelling the adsorption of mercury onto natural and aluminium pillared clays. Environ Sci Pollut Res 20:469–479. https://doi.org/10.1007/s11356-012-0874-4

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Nanotechnology Laboratory (S013) of Franciscan University for the support and assistance in performing the present study.

Funding

Funding was provided by FAPERGS (grant no. 22/2551-0000838-0) and Franciscanian University.

Author information

Authors and Affiliations

Authors

Contributions

DMD: conceptualization, data curation, formal analysis, investigation, validation, writing—original draft, and writing—review and editing. PCLM: conceptualization, data curation, formal analysis, writing—review, and editing. LRO: conceptualization, data curation, formal analysis, writing—review, and editing. MLDC: formal analysis, investigation, validation and writing—original draft. RDW: formal analysis, investigation, validation and writing—original draft. SNL: formal analysis, investigation, validation and writing—original draft. WLDS: conceptualization, data curation, formal analysis, investigation, validation, writing—original draft, and writing—review and editing. JHZDS: conceptualization, data curation, formal analysis, investigation, validation, writing—original draft, and writing—review and editing.

Corresponding authors

Correspondence to William Leonardo da Silva or João Henrique Zimnoch dos Santos.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Druzian, D.M., Muraro, P.C.L., Oviedo, L.R. et al. Removal of Hg2+ ions by adsorption using (TiO2@MnO2)-NPs nanocomposite. J Mater Cycles Waste Manag 25, 2691–2705 (2023). https://doi.org/10.1007/s10163-023-01743-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-023-01743-3

Keywords

Navigation