Skip to main content
Log in

Catalytic cracking of low-density polyethylene dissolved in various solvents: product distribution and coking behavior

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Production of polymers is increasing though their disposal in an environmentally friendly manner still illudes researchers. Chemical recycling attracts attention as products obtained from mechanical recycling suffer from inferior properties. Feeding of polymers to the reactors for conversions is difficult. To address this aspect and envisaging synergistic effects during catalytic cracking, we attempted dissolving low-density polyethylene in solvents cracking of which too is desirable (tetralin, decalin, and methylcyclohexane) to obtain value-added hydrocarbons. Catalysts used include parent and desilicated ZSM-5 and zeolite Beta, zeolite Y, silica-aluminas, and slurry hydrocracking catalyst. Liquid product yields increased when LDPE was present with the solvent. Further, additional compounds over only-solvent cracking were obtained. Alkylation of aromatics was proposed to arise from alkyl radicals resulting from LDPE cracking. Catalysts were characterized by various techniques. Coke deposited for different systems was quantified and analyzed and was found to be oligomers of olefins and aromatics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mirkarimi SMR, Bensaid S, Chiaramonti D (2022) Conversion of mixed waste plastic into fuel for diesel engines through pyrolysis process: a review. Appl Energy 327:120040

    Article  Google Scholar 

  2. Dai L, Zhou N, Lv Y, Cheng Y, Wang Y, Liu Y, Cobb K, Chen P, Lei H, Ruan R (2022) Pyrolysis technology for plastic waste recycling: a state-of-the-art review. Prog Energy Combust Sci 93:101021

    Article  Google Scholar 

  3. Dong Z, Chen W, Xu K, Liu Y, Wu J, Zhang F (2022) Understanding the structure-activity relationships in catalytic conversion of polyolefin plastics by zeolite-based catalysts: a critical review. ACS Catal 12(24):14882–14901. https://doi.org/10.1021/acscatal.2c04915

    Article  Google Scholar 

  4. Hussain I, Ganiyu SA, Alasiri H, Alhooshani K (2022) A state-of-the-art review on waste plastics-derived aviation fuel: unveiling the heterogeneous catalytic systems and techno-economy feasibility of catalytic pyrolysis. Energy Convers Manage 274:116433

    Article  Google Scholar 

  5. Sharuddin SDA, Abnisa F, Ashri WM, Daud W, Aroua MK (2016) A review on pyrolysis of plastic wastes. Energy Convers Manage 115:308–326

    Article  Google Scholar 

  6. Pandey KP, Jha UR, Kushwaha J, Priyadarsini M, Meshram SU, Dhoble AS (2023) Practical ways to recycle plastic: current status and future aspects. J Mater Cycles Waste Manage. https://doi.org/10.1007/s10163-023-01611-0

    Article  Google Scholar 

  7. Wei J, Liu J, Zeng W, Dong Z, Song J, Liu S, Liu G (2023) Catalytic hydroconversion processes for upcycling plastic waste to fuels and chemicals. Catal Sci Technol 13:1258–1280

    Article  Google Scholar 

  8. Chang T, Li C, Fan F, Wu H, Wang C, Yin F (2023) Effects of temperature zones on pyrolysis products of mixed plastic waste. J Mater Cycles Waste Manage 25:430–440

    Article  Google Scholar 

  9. Jiang J, Shi K, Zhang X, Yu K, Zhang H, He J, Ju Y, Liu J (2022) From plastic waste to wealth using chemical recycling: a review. J Environ Chem Eng 10(1):106867. https://doi.org/10.1016/j.jece.2021.106867

    Article  Google Scholar 

  10. Zhang F, Zeng M, Yappert RD, Sun J, Lee YH, LaPointe AM, Peters B, Abu-Omar MM, Scott SL (2020) Polyethylene upcycling to long-chain alkylaromatics by tandem hydrogenolysis/aromatization. Science 370(6515):437–441. https://doi.org/10.1126/science.abc5441

    Article  Google Scholar 

  11. PlasticsEurope (2021) Plastics - the Fact 2021 An analysis of European Plastics Production, demand and waste data

  12. Ellis LD, Rorrer NA, Sullivan KP, Otto M, McGeehan JE, Román-Leshkov Y, Wierckx N, Beckham GT (2021) Chemical and biological catalysis for plastics recycling and upcycling. Nat Catal 4(7):539–556. https://doi.org/10.1038/s41929-021-00648-4

    Article  Google Scholar 

  13. Miao Y, Jouanne A, Yokochi A (2021) Current technologies in depolymerization process and the road ahead. Polymers (Basel) 13(3):1–17. https://doi.org/10.3390/polym13030449

    Article  Google Scholar 

  14. Reimers JL (2021) Process for feeding plastic waste material to a thermochemical or pyrolysis reactor. WO 2021/096716 A1

  15. Wong SL, Ngadi N, Abdullah TAT, Inuwa IM (2015) Current state and future prospects of plastic waste as source of fuel: a review. Renew Sustain Energy Rev 50:1167–1180. https://doi.org/10.1016/j.rser.2015.04.063

    Article  Google Scholar 

  16. Mechanistic classification and benchmarking of polyolefin depolymerization over silicaalumina-based catalysts, Wei-Tse Lee1 , Antoine van Muyden 1 , Felix D. Bobbink1 , Mounir D. Mensi1 , Jed R. Carullo1 and Paul J. Dyson, Nature Communications, (2022) 13: 4850

  17. Wong SL, Ngadi N, Abdullah TAT (2014) Study on dissolution of low density polyethylene (LDPE). Appl Mech Mater 695:170–173

    Article  Google Scholar 

  18. Wong SL, Ngadi N, Abdullah TAT (2013) Solubilisation of Low Density Polyethylene (LDPE) for Pyrolysis. 4th International Graduate Conference on Engineering Science & Humanity 2013 (IGCESH 2013) At: Universiti Teknologi Malaysia. 1029–1035. https://doi.org/10.13140/RG.2.1.3708.5608

  19. Wong SL, Ngadi N, Abdullah TAT, Inuwa IM (2017) Conversion of low density polyethylene (LDPE) over ZSM-5 zeolite to liquid fuel. Fuel 192:71–82. https://doi.org/10.1016/j.fuel.2016.12.008

    Article  Google Scholar 

  20. Wong SL, Ngadi N, Abdullah TAT, Inuwa IM (2016) Catalytic cracking of LDPE dissolved in benzene using Nickel-impregnated zeolites. Ind Eng Chem Res 55(9):2543–2555. https://doi.org/10.1021/acs.iecr.5b04518

    Article  Google Scholar 

  21. Vicente G, Aguado J, Serrano DP, Sánchez N (2009) HDPE chemical recycling promoted by phenol solvent. J Anal Appl Pyrolysis 85(1–2):366–371. https://doi.org/10.1016/j.jaap.2008.10.007

    Article  Google Scholar 

  22. De La PG, Klocker C, Sedran U (2002) Conversion of waste plastics into fuels recycling polyethylene in FCC. Appl Catal B Environ 36(4):279–285. https://doi.org/10.1016/S0926-3373(01)00287-9

    Article  Google Scholar 

  23. Marcilla A, García ÁN, Remedio HM (2007) Thermal degradation of LDPE - vacuum gas oil mixtures for plastic wastes valorization. Energy Fuels 21(2):870–880. https://doi.org/10.1021/ef0605293

    Article  Google Scholar 

  24. Passamonti FJ, Sedran U (2012) Recycling of waste plastics into fuels. LDPE conversion in FCC. Appl Catal B Environ 125:499–506. https://doi.org/10.1016/j.apcatb.2012.06.020

    Article  Google Scholar 

  25. Aguado J, Serrano DP, Vicente G, Sánchez N (2007) Enhanced production of α-olefins by thermal degradation of high-density polyethylene (HDPE) in decalin solvent: effect of the reaction time and temperature. Ind Eng Chem Res 46(11):3497–3504. https://doi.org/10.1021/ie060975d

    Article  Google Scholar 

  26. Serrano DP, Aguado J, Vicente G, Sánchez N (2007) Effects of hydrogen-donating solvents on the thermal degradation of HDPE. J Anal Appl Pyrolysis 78(1):194–199. https://doi.org/10.1016/j.jaap.2006.07.001

    Article  Google Scholar 

  27. Aguado J, Serrano DP, Vicente G, Sánchez N (2006) Effect of decalin solvent on the thermal degradation of HDPE. J Polym Environ 14(4):375–384. https://doi.org/10.1007/s10924-006-0034-3

    Article  Google Scholar 

  28. Chaudhary A, Dave M, Upadhyay DS (2022) Value-added products from waste plastics using dissolution technique. Mater Today Proc 57:1730–1737. https://doi.org/10.1016/j.matpr.2021.12.363

    Article  Google Scholar 

  29. Jia C, Xie S, Zhang W, Intan NN, Sampath J, Pfaendtner J, Lin H (2021) Deconstruction of high-density polyethylene into liquid hydrocarbon fuels and lubricants by hydrogenolysis over ru catalyst. Chem Catal 1(2):437–455. https://doi.org/10.1016/j.checat.2021.04.002

    Article  Google Scholar 

  30. Chang HZ, Li JQ, Du S, Shen KY, Yang Q, Yi H, Zhang JW (2019) Transformation characteristics of hydrogen-donor solvent tetralin in the process of direct coal liquefaction. Front Chem 7:1–6. https://doi.org/10.3389/fchem.2019.00737

    Article  Google Scholar 

  31. Laredo GC, Pérez-Romo P, Escobar J, Garcia-Gutierrez JL, Vega-Merino PM (2017) Light cycle oil upgrading to benzene, toluene, and xylenes by hydrocracking: studies using model mixtures. Ind Eng Chem Res 56(39):10939–10948. https://doi.org/10.1021/acs.iecr.7b02827

    Article  Google Scholar 

  32. Corma A, González-Alfaro V, Orchillés AV (2001) Decalin and tetralin as probe molecules for cracking and hydrotreating the light cycle oil. J Catal 200(1):34–44

    Article  Google Scholar 

  33. Arandes JM, Eren J, Bilbao J, Lo´pez-Valerio D, De la Puente G, (2003) Valorization of polyolefins dissolved in light cycle oil over HY zeolites under fluid catalytic cracking unit conditions. Ind Eng Chem Res 42:3952–3961

    Article  Google Scholar 

  34. Lopez G, Artetxe M, Amutio M, Bilbao J, Olazar M (2017) Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. a review. Renew Sustain En Rev 73:346–368

    Article  Google Scholar 

  35. Matsunaga Y, Yamazaki H, Yokoi T, Tatsumi T, Kondo JN (2013) IR characterization of homogeneously mixed silica-alumina samples and dealuminated y zeolites by using pyridine, co, and propene probe molecules. J Phys Chem C 117(27):14043–14050. https://doi.org/10.1021/jp403242n

    Article  Google Scholar 

  36. Busch OM, Brijoux W, Thomson S, Schüth F (2004) Spatially resolving infrared spectroscopy for parallelized characterization of acid sites of catalysts via pyridine sorption: possibilities and limitations. J Catal 222(1):174–179. https://doi.org/10.1016/j.jcat.2003.11.002

    Article  Google Scholar 

  37. Khanchi M, Mousavian SMA, Soltanali S (2022) Methanol steam reforming over cu supported on SiO2, amorphous SiO2-Al2O3, and Al2O3 catalysts: influence of support nature. Int J Energy Res 46(3):3057–3071. https://doi.org/10.1002/er.7363

    Article  Google Scholar 

  38. Chal R, Cacciaguerra T, Van Donk S, Gérardin C (2010) Pseudomorphic synthesis of mesoporous zeolite y crystals. Chem Commun 46(41):7840–7842. https://doi.org/10.1039/c0cc02073g

    Article  Google Scholar 

  39. Chapellière Y, Daniel C, Tuel A, Farrusseng D, Schuurman Y (2021) Kinetics of N-hexane cracking over mesoporous Hy zeolites based on catalyst descriptors. Catalysts 11(6):652. https://doi.org/10.3390/catal11060652

    Article  Google Scholar 

  40. Xu B, Yang Y, Xu Y, Han B, Wang Y, Liu X, Yan Z (2017) Synthesis and characterization of mesoporous Si-modified alumina with high thermal stability. Microporous Mesoporous Mater 238:84–89. https://doi.org/10.1016/j.micromeso.2016.02.031

    Article  Google Scholar 

  41. Song C, Zhang L, Li Z, Lu Y, Li K (2019) Co-exchange of Mn: a simple method to improve both the hydrothermal stability and activity of Cu–SSZ-13 NH3 –SCR catalysts. Catalysts 9(5):455. https://doi.org/10.3390/catal9050455

    Article  Google Scholar 

  42. Chen L, Janssens TVW, Skoglundh M, Grönbeck H (2019) Interpretation of NH 3 -TPD profiles from Cu-CHA using first-principles calculations. Top Catal 62(1–4):93–99. https://doi.org/10.1007/s11244-018-1095-y

    Article  Google Scholar 

  43. Dwivedi U, Pant KK, Naik SN (2021) Controlling liquid hydrocarbon composition in valorization of plastic waste via tuning zeolite framework and SiO2/Al2O3 ratio. J Environ Manage 297:113288. https://doi.org/10.1016/j.jenvman.2021.113288

    Article  Google Scholar 

  44. Gao F, Washton NM, Wang Y, Kollár M, Szanyi J, Peden CHF (2015) Effects of Si/Al Ratio on Cu/SSZ-13 NH3-SCR catalysts: implications for the active Cu species and the roles of brønsted acidity. J Catal 331:25–38. https://doi.org/10.1016/j.jcat.2015.08.004

    Article  Google Scholar 

  45. Hinton ZR, Kots PA, Soukaseum M, Vance BC, Vlachos DG, Epps TH, Korley LTJ (2022) Antioxidant-induced transformations of a metal acid hydrocracking catalyst in the deconstruction of polyethylene waste. Green Chem 24:7332–7339. https://doi.org/10.1039/d2gc02503e

    Article  Google Scholar 

  46. Kostyniuk A, Bajec D, Likozar B (2021) Catalytic hydrocracking reactions of tetralin as aromatic biomass tar model compound to benzene/toluene/xylenes (BTX) over zeolites under ambient pressure conditions. J Ind Eng Chem 96:130–143. https://doi.org/10.1016/j.jiec.2021.01.010

    Article  Google Scholar 

  47. Inayat A, Inayat A, Schwieger W, Sokolova B, Lestinsky P (2022) Enhancing aromatics and olefins yields in thermo-catalytic pyrolysis of LDPE over zeolites: role of staged catalysis and acid site density of HZSM-5. Fuel 314:123071. https://doi.org/10.1016/j.fuel.2021.123071

    Article  Google Scholar 

  48. Wang Z, Chen D, Shan Y, Lin L, Duan P (2022) Catalytic hydrotreatment of the high-boiling-point fraction of soybean straw biocrude in a mixed hydrogen donor. Fuel 310:122126

    Article  Google Scholar 

  49. Díaz M, Epelde E, Valecillos J, Izaddoust S, Aguayo AT, Bilbao J (2021) Coke deactivation and regeneration of HZSM-5 zeolite catalysts in the oligomerization of 1-butene. Appl Catal B Environ 291:120076. https://doi.org/10.1016/j.apcatb.2021.120076

    Article  Google Scholar 

  50. Shuo CGM (2004) Study of coke and coke precursors during catalytic cracking of N-hexane and 1-hexene over ultrastable Y Zeolite. Catal Lett 96(3–4):195–200. https://doi.org/10.1023/B:CATL.0000030120.29538.5d

    Article  Google Scholar 

  51. Royo C, Perdices JM, Monzón A, Santamaría J (1996) Regeneration of fixed-bed catalytic reactors deactivated by coke: influence of operating conditions and of different pretreatments of the coke deposits. Ind Eng Chem Res 35(6):1813–1823. https://doi.org/10.1021/ie950639p

    Article  Google Scholar 

  52. Jadon TPS, Jana AK, Parikh PA (2021) Conversion of biorenewably available acetone and butanol to liquid fuels using base catalysts. Biomass Convers Biorefinery 11(5):1921–1930. https://doi.org/10.1007/s13399-019-00563-6

    Article  Google Scholar 

  53. Mahale RS, Parikh PA (2020) Aromatization of N-hexane: synergism afforded by C1–C3 alcohols. Chem Eng Sci 217:1–7. https://doi.org/10.1016/j.ces.2020.115519

    Article  Google Scholar 

  54. Gupta K, Jana AK, Chakraborty M, Parikh PA (2021) Treating crude oil storage tank sludge by catalytic process and recovering valuable hydrocarbons. Chem Pap 758:4285–4296. https://doi.org/10.1007/s11696-021-01564-4

    Article  Google Scholar 

  55. Tullo A (2022) All in on plastics pyrolysis. Chem Eng News 100(36):22–28

    Article  Google Scholar 

  56. Fries E, Grewal T, Suhring R (2022) Persistent, mobile, and toxic plastic additives in Canada: properties and prioritization. Environ Sci: Processes Impacts 24:1945–1956

    Google Scholar 

  57. Hale RC, King AE, Ramirez LM, La Guardia M, Nidel C (2022) Durable plastic goods: a source of microplastics and chemical additives in the built and natural environments. Environ Sci Technol Lett 9:798–807

    Article  Google Scholar 

  58. Wiesinger H, Wang Z, Hellweg S (2021) Deep dive into plastic monomers, additives, and processing aids. Environ Sci Technol 55:9339–9351

    Article  Google Scholar 

Download references

Acknowledgements

Authors extend sincere gratitude to Dr. Ganapati V. Shanbhag (PPISR, Bengaluru), Dr. Hitesh Saravaia (CSMCRI, Bhavnagar), Dr. K. Suresh Kumar (SVNIT, Surat), and Dr. Arindam Modak (IIT, Delhi) for kindly extending their analytical facilities. They also thank Mr Digvijay for preparing figures.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

PAP: conceptualization, result analysis, arranging resources, supervision of experiments, reviewing and editing manuscript. BM: product analyses, editing manuscript. DJM: conducted experiments, result analysis, writing original draft of manuscript.

Corresponding authors

Correspondence to Bharat Modhera or Parimal A. Parikh.

Ethics declarations

Conflict of interest

Authors declare that they have no known conflict financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 67 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machhi, D.J., Modhera, B. & Parikh, P.A. Catalytic cracking of low-density polyethylene dissolved in various solvents: product distribution and coking behavior. J Mater Cycles Waste Manag 25, 3005–3020 (2023). https://doi.org/10.1007/s10163-023-01734-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-023-01734-4

Keywords

Navigation