Skip to main content
Log in

Effect of Decalin Solvent on the Thermal Degradation of HDPE

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The thermal cracking of HDPE in presence of different amounts of decalin was studied and compared with the reaction carried out in the absence of solvent. The decalin favours the mass and heat transfer during the reaction. In addition, it modifies the thermal degradation mechanism, which facilitates the formation of specific products. The use of decalin substantially increases the C5–C32 yield in comparison with the solventless reaction. In all cases, linear hydrocarbons such as n-paraffins, α-olefins and α,ω-dienes were detected. Increasing the decalin/plastic ratio led to enhanced α-olefin and n-paraffins yields, but the increase was more significant in the case of α-olefins, which are valuable compounds useful as raw chemicals. A reaction mechanism was proposed to explain the results obtained in presence of decalin. In these reactions, intramolecular radical transfer, secondary radical β-scission and hydrogen transfer from both decalin to intermediate radicals and from the polymer chain to regenerate the decalin play a significant role in determining the plastic conversion and the relative amounts of each product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Association of Plastics Manufactures in Europe (APME) (2004) Plastics: An analysis of plastics consumption and recovery in Europe 2002 & 2003, APME, Brussels

  2. Aguado J, Serrano DP (1999) Feedstock recycling of plastic wastes. Royal Society of Chemistry, Cambridge

    Google Scholar 

  3. Tsuji T, Tanaka Y, Itoh H (2001) J Mater Cycles Waste Manag 3:2

    CAS  Google Scholar 

  4. Wenning HP (1993) J Anal Appl Pyrolysis 25:301

    Article  CAS  Google Scholar 

  5. Van Grieken R, Serrano DP, Aguado J, García R, Rojo C (2001) J Anal Appl Pyrolysis 58–59:127

    Article  Google Scholar 

  6. Serrano DP, Aguado J, Escola JM, Rodríguez JM, Morselli L, Orsi R (2003) J Anal Appl Pyrolysis 68–69:481

    Article  CAS  Google Scholar 

  7. Ranzi E, Dente M, Faravelli T, Bozzano G, Fabini S, Nava R, Cosan V, Tognotti L (1997) J Anal Appl Pyrolysis 40–41:305

    Article  Google Scholar 

  8. Kim JS, Kaminsky W, Schlesselmann B (1997) J Anal Appl Pyrolysis 40–41:365

    Article  Google Scholar 

  9. Westerhout RWJ, Waanders J, Kuipers JAM, van Swaaij WPM (1998) Ind Eng Chem Res 37:2293

    Article  CAS  Google Scholar 

  10. Bockhorn H, Hornung A, Hornung U, Schawaller D (1999) J Anal Appl Pyrolysis 48:93

    Article  CAS  Google Scholar 

  11. Karaduman A, Çetin Koçak M, Bilgesü AY (2003) Polym-Plast Technol Eng 42:181

    Article  CAS  Google Scholar 

  12. Sato S, Murakata T, Baba S, Saito Y, Watanabe S (1990) J Appl Polym Sci 40:2065

    Article  CAS  Google Scholar 

  13. Karaduman A, Şimşek EH, Çiçek B, Bilgesü AY (2002) J Anal Appl Pyrolysis 62:273

    Article  CAS  Google Scholar 

  14. Murakata T, Wagatsuma S, Saito Y, Suzuki T, Sato S (1993) Polymer 34:1431

    Article  CAS  Google Scholar 

  15. Murakata T, Saito Y, Yosikawa T, Suzuki T, Sato S (1993) Polymer 34:1436

    Article  CAS  Google Scholar 

  16. Karaduman A (2002) Energy Sources 24:667

    Article  CAS  Google Scholar 

  17. Arandes JM, Ereña J, Azkoiti MJ, Olazar M, Bilbao J (2003) J Anal Appl Pyrolysis 70:747

    Article  CAS  Google Scholar 

  18. Karaduman A, Şimşek EH, Çetin K, Bilgesü AY (2002) Polym-Plast Technol Eng 41:767

    Article  CAS  Google Scholar 

  19. Karaduman A, Şimsek EH (2001) J Polym Environ 9:85

    Article  CAS  Google Scholar 

  20. Scott DS, Majerski P, Piskorz J, Radlein D, Barcknickel M (1999) Can J Chem Eng 77:1021

    Article  CAS  Google Scholar 

  21. Simha R, Wall LA (1952) J Phys Chem 56:707

    Article  CAS  Google Scholar 

  22. Wall LA, Madorsky SL, Brown DW, Straus S, Simha R (1954) J Am Chem Soc 76:3430

    Article  CAS  Google Scholar 

  23. Tsuchiya Y, Sumi K (1968) J Polym Sci Pol Chem 6:415

    Article  CAS  Google Scholar 

  24. Kiran E, Gillham JK (1976) J Appl Polym Sci 20:2045

    Article  CAS  Google Scholar 

  25. Sawada H (1985) Depolymerization Encycl Polym Sci Eng 4:719

    CAS  Google Scholar 

  26. Lattimer RP (1995) J Anal Appl Pyrolysis 31:203

    Article  CAS  Google Scholar 

  27. Faravelli T, Bozzano G, Scassa C, Perego M, Fabini S, Ranzi E, Dente M (1999) J Anal Appl Pyrolysis 52:87

    Article  CAS  Google Scholar 

  28. Poutsma ML (2003) Macromolecules 36:8931

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been funded by the “Comisión Inteministerial de Ciencia y Tecnología” from Spain (Project CICYT REN2002-03530).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Aguado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aguado, J., Serrano, D.P., Vicente, G. et al. Effect of Decalin Solvent on the Thermal Degradation of HDPE. J Polym Environ 14, 375–384 (2006). https://doi.org/10.1007/s10924-006-0034-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-006-0034-3

Keywords

Navigation