Skip to main content

Advertisement

Log in

Practical ways to recycle plastic: current status and future aspects

  • REVIEW
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

With sky-rocketing demand and unrestricted global production, plastics have become an inseparable part of daily human life and the circular economy at large. Notwithstanding, it is crucial to consider that they lead to substantial economic losses, disrupt the ecological equilibrium, and cause environmental pollution. In this regard, several strategies have been employed in the past, such as recycling techniques, waste management systems, extended producer responsibility, reduction of incineration, plastic prohibition, and globular thinking. These methods work toward the more sustainable usage of plastics in the future, but so far, none have scaled up to the industries’ growing demands. It also reflects the current state of the art of these methods concerning the status of scientific research and gap areas in the recycling pathways. Chemical recycling seems to be one of the most efficient techniques, as it is less time consuming and the least waste is generated, but the requirement of efficient sorting makes it time consuming. While other methods generate waste and are comparatively more time consuming. Thus, each recycling method has its limitations, indicating that much work is needed to tackle the growing problem of plastic pollution. In addition, in the context of the present drawbacks of the methods, this review discusses a concomitant solution to the problem of plastic pollution via sustainable development by offering an alternative to fossil fuel-based plastic materials, i.e., biodegradable plastics.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

PET/PETE:

Polyethylene terephthalate

PS:

Polystyrene

LDPE:

Low-density polyethylene

PP:

Polypropylene

PVC:

Polyvinyl chloride

HDPE:

High density polyethylene

CTA-POM:

CetylTrimethyl Ammonium-PolyOxoMetalate

FCC:

Fluid Catalytic Cracking

ZSM-5:

Zeolite Socony Mobil #5

iPP:

Isotactic polypropylene

PE:

Polyethylene

PU:

Polyurethane

BHET:

Bis (hydroxyethyl) terephthalate

DMT:

Dimethyl terephthalate

EDA:

Ethylenediamine

BAET:

Bis(2-aminoethyl) terephthalamide

PDK:

Polydiketoenamine

References

  1. Lambert S, Wagner M (2017) Environmental performance of bio-based and biodegradable plastics: the road ahead. Chem Soc Rev 46(22):6855–6871. https://doi.org/10.1039/c7cs00149e

    Article  Google Scholar 

  2. López-Rubio A, Almenar E, Hernandez-Muñoz P, Lagarón JM, Catalá R, Gavara R (2004) Overview of active polymer-based packaging technologies for food applications. Food Rev Int 20(4):357–387. https://doi.org/10.1081/FRI-200033462

    Article  Google Scholar 

  3. Mrowiec B (2018) Plastics in the circular economy (CE). Ochrona Srodowiska i Zasobow Naturalnych 29(4):16–19. https://doi.org/10.2478/oszn-2018-0017

    Article  Google Scholar 

  4. World Economic Forum and 2016, The new plastics economy rethinking the future of plastics. coscienzeinrete.net, 2016 [Online]. Available: http://coscienzeinrete.net/wp-content/uploads/2017/02/WEF_The_New_Plastics_Economy.pdf. Accessed 19 Feb 2022

  5. Sardon H, Dove AP (2018) Plastics recycling with a difference: a novel plastic with useful properties can easily be recycled again and again. Science (1979) 360(6387):380–381. https://doi.org/10.1126/SCIENCE.AAT4997/ASSET/0B77E5AE-50EE-4F68-92CC-9DB43A9A9E0F/ASSETS/GRAPHIC/360_380_F1.JPEG

    Article  Google Scholar 

  6. Jang YC, Hong S, Lee J, Lee MJ, Shim WJ (2014) Estimation of lost tourism revenue in Geoje Island from the 2011 marine debris pollution event in South Korea. Mar Pollut Bull 81(1):49–54. https://doi.org/10.1016/j.marpolbul.2014.02.021

    Article  Google Scholar 

  7. B Gervet, B Nordell, The use of crude oil in plastic making contributes to global warming Fluid dynamics View project Renewable Energy View project. [Online]. Available: https://www.researchgate.net/publication/266469821. Accessed 17 Feb 2022

  8. DKA Barnes, F Galgani, RC Thompson, M Barlaz (2009) Accumulation and Fragmentation of Plastic Debris in Global Environments. [Online]. Available: https://www.jstor.org/stable/40485977. Accessed 17 Feb 2022

  9. Gregory MR (2009) Environmental implications of plastic debris in marine settings- entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Philos Trans Royal Soc B 364(1526):2013–2025. https://doi.org/10.1098/rstb.2008.0265

    Article  Google Scholar 

  10. Barboza LGA, Gimenez BCG (2015) Microplastics in the marine environment: current trends and future perspectives. Marine Pollut Bull 97(1–2):5–12. https://doi.org/10.1016/j.marpolbul.2015.06.008

    Article  Google Scholar 

  11. Mato Y, Isobe T, Takada H, Kanehiro H, Ohtake C, Kaminuma T (2001) Plastic resin pellets as a transport medium for toxic chemicals in the marine environment. Environ Sci Technol 35(2):318–324. https://doi.org/10.1021/es0010498

    Article  Google Scholar 

  12. Browne MA, Dissanayake A, Galloway TS, Lowe DM, Thompson RC (2008) Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environ Sci Technol 42(13):5026–5031. https://doi.org/10.1021/es800249a

    Article  Google Scholar 

  13. Hammer J, Kraak MHS, Parsons JR (2012) Plastics in the marine environment: the dark side of a modern gift. Rev Environ Contam Toxicol 220:1–44. https://doi.org/10.1007/978-1-4614-3414-6_1

    Article  Google Scholar 

  14. Okunola AA, Kehinde IO, Oluwaseun A, Olufiropo AE (2019) Public and environmental health effects of plastic wastes disposal: a review. J Toxicol Risk Assess. https://doi.org/10.23937/2572-4061.1510021

    Article  Google Scholar 

  15. Okoffo ED, O’Brien S, O’Brien JW, Tscharke BJ, Thomas KV (2019) Wastewater treatment plants as a source of plastics in the environment: a review of occurrence, methods for identification, quantification and fate. Environ Sci 5(11):1908–1931. https://doi.org/10.1039/c9ew00428a

    Article  Google Scholar 

  16. Tetu SG et al (2019) Plastic leachates impair growth and oxygen production in Prochlorococcus the ocean’s most abundant photosynthetic bacteria. Commun Biol. https://doi.org/10.1038/s42003-019-0410-x

    Article  Google Scholar 

  17. Andrade AJM, Grande SW, Talsness CE, Grote K, Chahoud I (2006) A dose-response study following in utero and lactational exposure to di-(2-ethylhexyl)-phthalate (DEHP): non-monotonic dose-response and low dose effects on rat brain aromatase activity. Toxicology 227(3):185–192. https://doi.org/10.1016/j.tox.2006.07.022

    Article  Google Scholar 

  18. Prata JC, da Costa JP, Lopes I, Duarte AC, Rocha-Santos T (2020) Environmental exposure to microplastics: an overview on possible human health effects. Sci Total Environ 702:134455. https://doi.org/10.1016/J.SCITOTENV.2019.134455

    Article  Google Scholar 

  19. Mason SA, Welch VG, Neratko J (2018) Synthetic polymer contamination in bottled water. Front Chem. https://doi.org/10.3389/fchem.2018.00407

    Article  Google Scholar 

  20. Anastas PT, Beach ES (2007) Green chemistry: the emergence of a transformative framework. Green Chem Lett Rev 1(1):9–24. https://doi.org/10.1080/17518250701882441

    Article  Google Scholar 

  21. European Commission (2019) A circular economy for plastics—insights from research and innovation to inform policy and funding decisions. European Commission, Brussels, p 206. https://doi.org/10.2777/269031

    Book  Google Scholar 

  22. Leal Filho W et al (2019) An overview of the problems posed by plastic products and the role of extended producer responsibility in Europe. J Clean Prod 214:550–558. https://doi.org/10.1016/j.jclepro.2018.12.256

    Article  Google Scholar 

  23. Rebeiz KS, Craft AP (1995) Plastic waste management in construction: technological and institutional issues. Resour Conserv Recycl 15:245–257

    Article  Google Scholar 

  24. Singh P, Sharma VP (2016) Integrated plastic waste management: environmental and improved health approaches. Procedia Environ Sci 35:692–700. https://doi.org/10.1016/j.proenv.2016.07.068

    Article  Google Scholar 

  25. Single-use plastics: A roadmap for sustainability | UNEP - UN Environment Programme. https://www.unep.org/resources/report/single-use-plastics-roadmap-sustainability. Accessed 16 Feb 2022

  26. E Watkins, S Gionfra, J-P Schweitzer, M Pantzar, CJ Patrick Ten Brink, (2017) EPR in the EU plastics strategy and the circular economy: a focus on plastic packaging. [Online]. Available: www.ieep.eu. Accessed 17 Feb 2022

  27. Thompson RC, Moore CJ, Saal FSV, Swan SH (2009) Plastics, the environment and human health: current consensus and future trends. Philos Trans R Soc B 364(1526):2153–2166. https://doi.org/10.1098/rstb.2009.0053

    Article  Google Scholar 

  28. Satapathy S (2017) An analysis of barriers for plastic recycling in the Indian plastic industry. Benchmarking 24(2):415–430. https://doi.org/10.1108/BIJ-11-2014-0103

    Article  Google Scholar 

  29. Scott G (1976) Some chemical problems in the recycling of plastics. Resour Recover Conserv 1(4):381–395. https://doi.org/10.1016/0304-3967(76)90027-5

    Article  Google Scholar 

  30. Alabi OA, Bakare AA, Xu X, Li B, Zhang Y, Huo X (2012) Comparative evaluation of environmental contamination and DNA damage induced by electronic-waste in Nigeria and China. Sci Total Environ 423:62–72. https://doi.org/10.1016/J.SCITOTENV.2012.01.056

    Article  Google Scholar 

  31. Sepúlveda A et al (2010) A review of the environmental fate and effects of hazardous substances released from electrical and electronic equipments during recycling: examples from China and India. Environ Impact Assess Rev 30(1):28–41. https://doi.org/10.1016/j.eiar.2009.04.001

    Article  Google Scholar 

  32. Zhang XL, Luo XJ, Liu HY, Yu LH, Chen SJ, Mai BX (2011) Bioaccumulation of several brominated flame retardants and dechlorane plus in waterbirds from an e-waste recycling region in south China: associated with trophic level and diet sources. Environ Sci Technol 45(2):400–405. https://doi.org/10.1021/es102251s

    Article  Google Scholar 

  33. V Chandegara, MT Kumpavat, K Patel, (2015) Plastic Packaging Waste Impact on Climate Change and its Mitigation Design and Fabrication of Evaporative Cooling Transportation System View project Response of wheat water use efficiency, water productivity and yield attributes to soil moisture tension based irrigation scheduling in clay loam soils of semi arid region View project. [Online]. Available: https://www.researchgate.net/publication/284726839. Accessed 17 Feb 2022

  34. Balwada J, Samaiya S, Mishra RP (2021) Packaging plastic waste management for a circular economy and identifying a better waste collection system using analytical hierarchy process (AHP). Procedia CIRP 98:270–275. https://doi.org/10.1016/J.PROCIR.2021.01.102

    Article  Google Scholar 

  35. Browning S, Beymer-Farris B, Seay JR (2021) Addressing the challenges associated with plastic waste disposal and management in developing countries. Curr Opin Chem Eng 32:100682. https://doi.org/10.1016/J.COCHE.2021.100682

    Article  Google Scholar 

  36. Hahladakis JN, Purnell P, Iacovidou E, Velis CA, Atseyinku M (2018) Post-consumer plastic packaging waste in England: assessing the yield of multiple collection-recycling schemes. Waste Manag 75:149–159. https://doi.org/10.1016/J.WASMAN.2018.02.009

    Article  Google Scholar 

  37. Tong YD, Huynh TDX, Khong TD (2021) Understanding the role of informal sector for sustainable development of municipal solid waste management system: a case study in Vietnam. Waste Manag 124:118–127. https://doi.org/10.1016/J.WASMAN.2021.01.033

    Article  Google Scholar 

  38. Hopewell J, Dvorak R, Kosior E (2009) Plastics recycling: challenges and opportunities. Philos Trans R Soc B 364(1526):2115–2126. https://doi.org/10.1098/RSTB.2008.0311

    Article  Google Scholar 

  39. Arvanitoyannis IS, Bosnea LA (2001) Recycling of polymeric materials used for food packaging: current status and perspectives. Food Rev Intl 17(3):291–346. https://doi.org/10.1081/FRI-100104703

    Article  Google Scholar 

  40. Silveira AVM, Cella M, Tanabe EH, Bertuol DA (2018) Application of tribo-electrostatic separation in the recycling of plastic wastes. Process Saf Environ Prot 114:219–228. https://doi.org/10.1016/J.PSEP.2017.12.019

    Article  Google Scholar 

  41. Censori M, la Marca F, Carvalho MT (2016) Separation of plastics: the importance of kinetics knowledge in the evaluation of froth flotation. Waste Manag 54:39–43. https://doi.org/10.1016/J.WASMAN.2016.05.021

    Article  Google Scholar 

  42. Serranti S, Luciani V, Bonifazi G, Hu B, Rem PC (2015) An innovative recycling process to obtain pure polyethylene and polypropylene from household waste. Waste Manag 35:12–20. https://doi.org/10.1016/J.WASMAN.2014.10.017

    Article  Google Scholar 

  43. Ozdemir ME, Ali Z, Subeshan B, Asmatulu E (2021) Applying machine learning approach in recycling. J Mater Cycles Waste Manag 23:855–871. https://doi.org/10.1007/s10163-021-01182-y

    Article  Google Scholar 

  44. Taylor RL, Villas-Boas SB (2016) Bans vs. fees: disposable carryout bag policies and bag usage. Appl Econ Perspect Pol 38(2):351–372. https://doi.org/10.1093/AEPP/PPV025

    Article  Google Scholar 

  45. Schnurr REJ et al (2018) Reducing marine pollution from single-use plastics (SUPs): a review. Mar Pollut Bull 137:157–171. https://doi.org/10.1016/J.MARPOLBUL.2018.10.001

    Article  MathSciNet  Google Scholar 

  46. Omondi I, Asari M (2021) A study on consumer consciousness and behavior to the plastic bag ban in Kenya. J Mater Cycles Waste Manag 23:425–435. https://doi.org/10.1007/s10163-020-01142-y

    Article  Google Scholar 

  47. Ragaert K, Delva L, van Geem K (2017) Mechanical and chemical recycling of solid plastic waste. Waste Manag 69:24–58. https://doi.org/10.1016/J.WASMAN.2017.07.044

    Article  Google Scholar 

  48. Lee J, Kwon EE, Lam SS, Chen WH, Rinklebe J, Park YK (2021) Chemical recycling of plastic waste via thermocatalytic routes. J Clean Prod 321:128989. https://doi.org/10.1016/J.JCLEPRO.2021.128989

    Article  Google Scholar 

  49. Sharuddin SDA, Abnisa F, Daud WMAW, Aroua MK (2018) Pyrolysis of plastic waste for liquid fuel production as prospective energy resource. IOP Conf Ser Mater Sci Eng 334(1):012001. https://doi.org/10.1088/1757-899X/334/1/012001

    Article  Google Scholar 

  50. Qin L, Xu Z, Zhao B, Zou C, Chen W, Han J (2022) Kinetic study on high-temperature gasification of medical plastic waste coupled with hydrogen-rich syngas production catalyzed by steel-converter ash. J Energy Inst 102:14–21. https://doi.org/10.1016/J.JOEI.2022.02.005

    Article  Google Scholar 

  51. Hou Q et al (2021) Upcycling and catalytic degradation of plastic wastes. Cell Rep Phys Sci 2(8):100514. https://doi.org/10.1016/J.XCRP.2021.100514

    Article  MathSciNet  Google Scholar 

  52. Shen M et al (2021) Can incineration completely eliminate plastic wastes? An investigation of microplastics and heavy metals in the bottom ash and fly ash from an incineration plant. Sci Total Environ 779:146528. https://doi.org/10.1016/J.SCITOTENV.2021.146528

    Article  Google Scholar 

  53. Coates GW, Getzler YDYL (2020) Chemical recycling to monomer for an ideal, circular polymer economy. Nat Rev Mater 5(7):501–516. https://doi.org/10.1038/s41578-020-0190-4

    Article  Google Scholar 

  54. Rahimi AR, Garciá JM (2017) Chemical recycling of waste plastics for new materials production. Nat Rev Chem 1(6):1–11. https://doi.org/10.1038/s41570-017-0046

    Article  Google Scholar 

  55. Banu JR, Sharmila VG, Ushani U, Amudha V, Kumar G (2020) Impervious and influence in the liquid fuel production from municipal plastic waste through thermo-chemical biomass conversion technologies—a review. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.137287

    Article  Google Scholar 

  56. Bartolome L, Imran M, Cho BG, Al-Masry WA, Kim DH (2012) Recent developments in the chemical recycling of PET. Mater Recycl Trends Perspect. https://doi.org/10.5772/33800

    Article  Google Scholar 

  57. Sinha V, Patel MR, Patel JV (2010) Pet waste management by chemical recycling: a review. J Polym Environ 18(1):8–25. https://doi.org/10.1007/s10924-008-0106-7

    Article  Google Scholar 

  58. Kannan P, Al Shoaibi A, Srinivasakannan C (2014) Temperature effects on the yield of gaseous olefins from waste polyethylene via flash pyrolysis. Energy Fuels 28(5):3363–3366. https://doi.org/10.1021/ef500516n

    Article  Google Scholar 

  59. Zhang Y et al (2020) Exergy and energy analysis of pyrolysis of plastic wastes in rotary kiln with heat carrier. Process Saf Environ Prot 142:203–211. https://doi.org/10.1016/j.psep.2020.06.021

    Article  Google Scholar 

  60. Fakhrhoseini SM, Dastanian M (2013) Predicting pyrolysis products of PE, PP, and PET using NRTL activity coefficient model. J Chem. https://doi.org/10.1155/2013/487676

    Article  Google Scholar 

  61. Ahmad I et al (2015) Pyrolysis study of polypropylene and polyethylene into premium oil products. Int J Green Energy 12(7):663–671. https://doi.org/10.1080/15435075.2014.880146

    Article  Google Scholar 

  62. S Kumar, RK Singh Recovery of hydrocarbon liquid from waste high density polyethylene by thermal pyrolysis. 28(04):659–667 [Online]. Available: www.abeq.org.br/bjche. Accessed 17 Feb 2022

  63. Marcilla A, Beltrán MI, Navarro R (2009) Thermal and catalytic pyrolysis of polyethylene over HZSM5 and HUSY zeolites in a batch reactor under dynamic conditions. Appl Catal B 86(1–2):78–86. https://doi.org/10.1016/j.apcatb.2008.07.026

    Article  Google Scholar 

  64. van der Westhuizen S, Collard FX, Görgens J (2022) Pyrolysis of waste polystyrene into transportation fuel: effect of contamination on oil yield and production at pilot scale. J Anal Appl Pyrolysis. https://doi.org/10.1016/j.jaap.2021.105407

    Article  Google Scholar 

  65. López A, de Marco I, Caballero BM, Laresgoiti MF, Adrados A, Torres A (2011) Pyrolysis of municipal plastic wastes II: influence of raw material composition under catalytic conditions. Waste Manag 31(9–10):1973–1983. https://doi.org/10.1016/j.wasman.2011.05.021

    Article  Google Scholar 

  66. Elordi G et al (2009) Catalytic pyrolysis of HDPE in continuous mode over zeolite catalysts in a conical spouted bed reactor. J Anal Appl Pyrolysis 85(1–2):345–351. https://doi.org/10.1016/J.JAAP.2008.10.015

    Article  Google Scholar 

  67. Fuentes-Ordóñez EG, Salbidegoitia JA, Ayastuy JL, Gutiérrez-Ortiz MA, González-Marcos MP, González-Velasco JR (2014) High external surface Pt/zeolite catalysts for improving polystyrene hydrocracking. Catal Today 227:163–170. https://doi.org/10.1016/j.cattod.2013.09.004

    Article  Google Scholar 

  68. Ochoa R, van Woert H, Lee WH, Subramanian R, Kugler E, Eklund PC (1996) Catalytic degradation of medium density polyethylene over silica-alumina supports. Fuel Process Technol 49:119–136

    Article  Google Scholar 

  69. Buekens AG, Huang H (1998) Catalytic plastics cracking for recovery of gasoline-range hydrocarbons from municipal plastic wastes. Resour Conserv Recycl 23:163–181

    Article  Google Scholar 

  70. Stelmachowski M (2010) Thermal conversion of waste polyolefins to the mixture of hydrocarbons in the reactor with molten metal bed. Energy Convers Manag 51(10):2016–2024. https://doi.org/10.1016/j.enconman.2010.02.035

    Article  Google Scholar 

  71. J Schirmer, JS Kim, E Klemm (2001) Catalytic degradation of polyethylene using thermal gravimetric analysis and a cycled-spheres-reactor. [Online]. Available: www.elsevier.com/locate/jaap. Accessed 17 Feb 2022

  72. Liu X, Burra KG, Wang Z, Li J, Che D, Gupta AK (2020) On deconvolution for understanding synergistic effects in co-pyrolysis of pinewood and polypropylene. Appl Energy. https://doi.org/10.1016/j.apenergy.2020.115811

    Article  Google Scholar 

  73. Čepelioʇullar Ö, Pütün AE (2014) Products characterization study of a slow pyrolysis of biomass-plastic mixtures in a fixed-bed reactor. J Anal Appl Pyrolysis 110(1):363–374. https://doi.org/10.1016/j.jaap.2014.10.002

    Article  Google Scholar 

  74. Chen W, Shi S, Chen M, Zhou X (2017) Fast co-pyrolysis of waste newspaper with high-density polyethylene for high yields of alcohols and hydrocarbons. Waste Manag 67:155–162. https://doi.org/10.1016/j.wasman.2017.05.032

    Article  Google Scholar 

  75. Wang X et al (2019) Synergistic effect of biomass and polyurethane waste co-pyrolysis on soot formation at high temperatures. J Environ Manag 239:306–315. https://doi.org/10.1016/j.jenvman.2019.03.073

    Article  Google Scholar 

  76. Duan D et al (2017) Ex-situ catalytic co-pyrolysis of lignin and polypropylene to upgrade bio-oil quality by microwave heating. Bioresour Technol 241:207–213. https://doi.org/10.1016/J.BIORTECH.2017.04.104

    Article  Google Scholar 

  77. Zhang X, Lei H, Chen S, Wu J (2016) Catalytic co-pyrolysis of lignocellulosic biomass with polymers: a critical review. Green Chem 18(15):4145–4169. https://doi.org/10.1039/c6gc00911e

    Article  Google Scholar 

  78. Muneer B, Zeeshan M, Qaisar S, Razzaq M, Iftikhar H (2019) Influence of in-situ and ex-situ HZSM-5 catalyst on co-pyrolysis of corn stalk and polystyrene with a focus on liquid yield and quality. J Clean Prod. https://doi.org/10.1016/j.jclepro.2019.117762

    Article  Google Scholar 

  79. Li X et al (2013) Improving the aromatic production in catalytic fast pyrolysis of cellulose by co-feeding low-density polyethylene. Appl Catal A Gen 455:114–121. https://doi.org/10.1016/j.apcata.2013.01.038

    Article  Google Scholar 

  80. Rutkowski P (2012) Chemical composition of bio-oil produced by co-pyrolysis of biopolymer/polypropylene mixtures with K2CO3 and ZnCl 2 addition. J Anal Appl Pyrolysis 95:38–47. https://doi.org/10.1016/j.jaap.2012.01.003

    Article  Google Scholar 

  81. Alvarez-Castillo A, Castafio VM (1995) Modification of polyester resins by an oligomeric additive. Polym Bull 35:187–194

    Article  Google Scholar 

  82. Pang K, Kotek R, Tonelli A (2006) Review of conventional and novel polymerization processes for polyesters. Progress Polym Sci (Oxford) 31(11):1009–1037. https://doi.org/10.1016/j.progpolymsci.2006.08.008

    Article  Google Scholar 

  83. J Clark, J Alonso, J Villalba, J Aguado, D Serrano (1999) Feedstock recycling of plastic wastes. [Online]. Available: https://books.google.co.in/books?hl=en&lr=&id=HUlLAvuGsoQC&oi=fnd&pg=PR5&dq=eedstock+Recycling+of+Plastic+Wastes+-+James+H.+Clark,+Jos%C3%A9+Aguado+Alonso,+Jos%C3%A9+Aguado+Villalba,+Jos%C3%A9+Aguado,+David+P.+Serrano,+D.+A.+Serrano+-+Google+Books&ots=AAxC7sB36J&sig=wq_OLqzZOwxfdoEJp_McNVi5JiQ. Accessed 19 Feb 2022

  84. Dietz HJ, Freese RE, Ter R, Assignors to Eastman Kodak Company (1968) Sub removal from polyester scrap. Patent 105(568):504

  85. Kurokawa H, Ohshima MA, Sugiyama K, Miura H (2003) Methanolysis of polyethylene terephthalate (PET) in the presence of aluminium tiisopropoxide catalyst to form dimethyl terephthalate and ethylene glycol. Polym Degrad Stab 79(3):529–533. https://doi.org/10.1016/S0141-3910(02)00370-1

    Article  Google Scholar 

  86. Campanelli JR, Kamal MR, Cooper DG (1993) A kinetic study of the hydrolytic degradation of polyethylene terephthalate at high temperatures. J Appl Polym Sci 48(3):443–451. https://doi.org/10.1002/APP.1993.070480309

    Article  Google Scholar 

  87. Tawfik ME, Eskander SB (2010) Chemical recycling of poly(ethylene terephthalate) waste using ethanolamine. Sorting of the end products. Polym Degrad Stab 95(2):187–194. https://doi.org/10.1016/J.POLYMDEGRADSTAB.2009.11.026

    Article  Google Scholar 

  88. Hoang CN, Dang YH (2013) Aminolysis of poly(ethylene terephthalate) waste with ethylenediamine and characterization of α, ω-diamine products. Polym Degrad Stab 98(3):697–708. https://doi.org/10.1016/J.POLYMDEGRADSTAB.2012.12.026

    Article  Google Scholar 

  89. M Khallaf (2011) The impact of air pollution on health, economy, environment and agricultural sources. [Online]. Available: https://books.google.co.in/books?hl=en&lr=&id=-eqcDwAAQBAJ&oi=fnd&pg=PR11&dq=(The+Impact+of+Air+Pollution+on+Health,+Economy,+Environment+and+Agricultural+Sources%3B+Khallaf,+M.,+Ed.%3B+Intech+Open:+London,+UK,+2011.)&ots=elT7JpSiQP&sig=GbgEiMRXl7sCNmwq710Nb3qsnh8. Accessed 19 Feb 2022

  90. Lopez G, Artetxe M, Amutio M, Alvarez J, Bilbao J, Olazar M (2018) Recent advances in the gasification of waste plastics. A critical overview. Renew Sustain Energy Rev 82:576–596. https://doi.org/10.1016/J.RSER.2017.09.032

    Article  Google Scholar 

  91. Elordi G, Olazar M, Lopez G, Artetxe M, Bilbao J (2011) Product yields and compositions in the continuous pyrolysis of high-density polyethylene in a conical spouted bed reactor. Ind Eng Chem Res 50(11):6650–6659. https://doi.org/10.1021/IE200186M

    Article  Google Scholar 

  92. Jung SH, Kim SJ, Kim JS (2013) The influence of reaction parameters on characteristics of pyrolysis oils from waste high impact polystyrene and acrylonitrile–butadiene–styrene using a fluidized bed reactor. Fuel Process Technol 116:123–129. https://doi.org/10.1016/J.FUPROC.2013.05.004

    Article  Google Scholar 

  93. Chai Y, Gao N, Wang M, Wu C (2020) H2 production from co-pyrolysis/gasification of waste plastics and biomass under novel catalyst Ni-CaO-C. Chem Eng J 382:122947. https://doi.org/10.1016/J.CEJ.2019.122947

    Article  Google Scholar 

  94. Sommerhuber PF, Welling J, Krause A (2015) Substitution potentials of recycled HDPE and wood particles from post-consumer packaging waste in wood-plastic composites. Waste Manag 46:76–85. https://doi.org/10.1016/J.WASMAN.2015.09.011

    Article  Google Scholar 

  95. Aurrekoetxea J, Sarrionandia MA, Urrutibeascoa I, Maspoch ML (2001) Fracture behaviour of virgin and recycled isotactic polypropylene. J Mater Sci 36(21):5073–5078. https://doi.org/10.1023/A:1012460804698

    Article  Google Scholar 

  96. Gahleitner M, Fiebig J, Wolfschwenger J, Dreiling G, Paulik C (2007) Post-crystallization and physical aging of polypropylene: material and processing effects. J Macromol Sci Part B 41 B(4–6):833–849. https://doi.org/10.1081/MB-120013068

    Article  Google Scholar 

  97. Yang K, Yang Q, Li G, Sun Y, Feng D (2006) Morphology and mechanical properties of polypropylene/calcium carbonate nanocomposites. Mater Lett 60(6):805–809. https://doi.org/10.1016/J.MATLET.2005.10.020

    Article  Google Scholar 

  98. Chan CM, Wu J, Li JX, Cheung YK (2002) Polypropylene/calcium carbonate nanocomposites. Polymer (Guildf) 43(10):2981–2992. https://doi.org/10.1016/S0032-3861(02)00120-9

    Article  Google Scholar 

  99. Suzuki G et al (2022) Mechanical recycling of plastic waste as a point source of microplastic pollution. Environ Pollut. https://doi.org/10.1016/J.ENVPOL.2022.119114

    Article  Google Scholar 

  100. Day M, Wiles DM (1972) Photochemical degradation of poly(ethylene terephthalate). I. Irradiation experiments with the xenon and carbon arc. J Appl Polym Sci 16(1):175–189. https://doi.org/10.1002/APP.1972.070160116

    Article  Google Scholar 

  101. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95(1):69–96. https://doi.org/10.1021/CR00033A004/ASSET/CR00033A004.FP.PNG_V03

    Article  Google Scholar 

  102. Gusain R, Gupta K, Joshi P, Khatri OP (2019) Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: a comprehensive review. Adv Colloid Interface Sci 272:102009. https://doi.org/10.1016/J.CIS.2019.102009

    Article  Google Scholar 

  103. Kolek Z (2001) Recycled polymers from food packaging in relation to environmental protection. Pol J Environ Stud 10:73–76

    Google Scholar 

  104. Garcia JM, Robertson ML (2017) The future of plastics recycling. Science (1979) 358(6365):870–872. https://doi.org/10.1126/SCIENCE.AAQ0324/ASSET/53AC3A00-0BBA-41D7-A05A-BE986DAF5476/ASSETS/GRAPHIC/358_870_F1.JPEG

    Article  Google Scholar 

  105. Foti S, Giuffrida M, Maravigna P, Montaudo G (1984) Direct mass spectrometry of polymers. XI. Primary thermal fragmentation processes in aromatic–aliphatic polyesters. J Polym Sci 22(6):1217–1229. https://doi.org/10.1002/POL.1984.170220602

    Article  Google Scholar 

  106. Zhao XU, Li Z, Chen Y, Shi L, Zhu Y (2007) Solid-phase photocatalytic degradation of polyethylene plastic under UV and solar light irradiation. J Mol Catal A Chem 268(1–2):101–106. https://doi.org/10.1016/J.MOLCATA.2006.12.012

    Article  Google Scholar 

  107. Miandad R, Barakat MA, Rehan M, Aburiazaiza AS, Ismail IMI, Nizami AS (2017) Plastic waste to liquid oil through catalytic pyrolysis using natural and synthetic zeolite catalysts. Waste Manag 69:66–78. https://doi.org/10.1016/J.WASMAN.2017.08.032

    Article  Google Scholar 

  108. Vermeulen I, van Caneghem J, Block C, Baeyens J, Vandecasteele C (2011) Automotive shredder residue (ASR): reviewing its production from end-of-life vehicles (ELVs) and its recycling, energy or chemicals’ valorisation. J Hazard Mater 190(1–3):8–27. https://doi.org/10.1016/J.JHAZMAT.2011.02.088

    Article  Google Scholar 

  109. Meys R, Frick F, Westhues S, Sternberg A, Klankermayer J, Bardow A (2020) Towards a circular economy for plastic packaging wastes—the environmental potential of chemical recycling. Resour Conserv Recycl 162:105010. https://doi.org/10.1016/J.RESCONREC.2020.105010

    Article  Google Scholar 

  110. Volk R et al (2021) Techno-economic assessment and comparison of different plastic recycling pathways: a German case study. J Ind Ecol 25(5):1318–1337. https://doi.org/10.1111/JIEC.13145

    Article  Google Scholar 

  111. Demirbas A (2007) Biodegradable plastics from renewable resources. Energy Sour Part A 29(5):419–424. https://doi.org/10.1080/009083190965820

    Article  MathSciNet  Google Scholar 

  112. Elordi G, Olazar M, Lopez G, Castaño P, Bilbao J (2011) Role of pore structure in the deactivation of zeolites (HZSM-5, Hβ and HY) by coke in the pyrolysis of polyethylene in a conical spouted bed reactor. Appl Catal B 102(1–2):224–231. https://doi.org/10.1016/J.APCATB.2010.12.002

    Article  Google Scholar 

  113. Kunwar B, Cheng HN, Chandrashekaran SR, Sharma BK (2016) Plastics to fuel: a review. Renew Sustain Energy Rev 54:421–428. https://doi.org/10.1016/J.RSER.2015.10.015

    Article  Google Scholar 

  114. Panda AK, Singh RK, Mishra DK (2010) Thermolysis of waste plastics to liquid fuel: a suitable method for plastic waste management and manufacture of value added products—a world prospective. Renew Sustain Energy Rev 14(1):233–248. https://doi.org/10.1016/J.RSER.2009.07.005

    Article  Google Scholar 

  115. Zhang Y, Duan D, Lei H, Villota E, Ruan R (2019) Jet fuel production from waste plastics via catalytic pyrolysis with activated carbons. Appl Energy 251:113337. https://doi.org/10.1016/J.APENERGY.2019.113337

    Article  Google Scholar 

  116. Cleetus C, Thomas S, Varghese S (2013) Synthesis of petroleum-based fuel from waste plastics and performance analysis in a CI engine. J Energy. https://doi.org/10.1155/2013/608797

    Article  Google Scholar 

  117. Celik G et al (2019) Upcycling single-use polyethylene into high-quality liquid products. ACS Cent Sci 5(11):1795–1803. https://doi.org/10.1021/ACSCENTSCI.9B00722/SUPPL_FILE/OC9B00722_SI_003.PDF

    Article  Google Scholar 

  118. Mishra RK, Maria HJ, Joseph K, Thomas S (2017) Basic structural and properties relationship of recyclable microfibrillar composite materials from immiscible plastics blends: an introduction. Micro and nano fibrillar composites (MFCs and NFCs) from polymer blends. Elsevier, Amsterdam, pp 1–25

    Google Scholar 

  119. Stein RS (1992) Emerging technologies in plastics recycling. American Chemical Society, Washington. https://doi.org/10.1021/bk-1992-0513.ch004

    Book  Google Scholar 

  120. Bates FS, Hillmyer MA, Lodge TP, Bates CM, Delaney KT, Fredrickson GH (2012) Multiblock polymers: panacea or Dandora’s box? Science (1979) 336(6080):434–440. https://doi.org/10.1126/SCIENCE.1215368/SUPPL_FILE/1215368.BATES.SM.PDF

    Article  MATH  Google Scholar 

  121. Creton C (2017) Molecular stitches for enhanced recycling of packaging: an additive creates tough blends from waste polyethylene and polypropylene. Science (1979) 355(6327):797–798. https://doi.org/10.1126/SCIENCE.AAM5803/ASSET/FDFC0458-E3C5-40A9-853E-C047DAA4D5E2/ASSETS/GRAPHIC/355_797_F1.JPEG

    Article  Google Scholar 

  122. Lin Y, Yakovleva V, Chen H, Hiltner A, Baer E (2009) Comparison of olefin copolymers as compatibilizers for polypropylene and high-density polyethylene. J Appl Polym Sci 113(3):1945–1952. https://doi.org/10.1002/APP.30190

    Article  Google Scholar 

  123. Nwabunma D, Kyu T (2007) Polyolefin blends. John Wiley & Sons Inc, Hoboken, pp 1–667. https://doi.org/10.1002/9780470199008

    Book  Google Scholar 

  124. Eagan JM et al (2017) Combining polyethylene and polypropylene: enhanced performance with PE/iPP multiblock polymers. Science (1979) 355(6327):814–816. https://doi.org/10.1126/SCIENCE.AAH5744/SUPPL_FILE/EAGAN.SM.PDF

    Article  Google Scholar 

  125. Huysman S, de Schaepmeester J, Ragaert K, Dewulf J, de Meester S (2017) Performance indicators for a circular economy: a case study on post-industrial plastic waste. Resour Conserv Recycl 120:46–54. https://doi.org/10.1016/J.RESCONREC.2017.01.013

    Article  Google Scholar 

  126. Morseletto P (2020) Targets for a circular economy. Resour Conserv Recycl 153:104553. https://doi.org/10.1016/J.RESCONREC.2019.104553

    Article  Google Scholar 

  127. Stahel WR (2016) The circular economy. Nature 531(7595):435–438. https://doi.org/10.1038/531435a

    Article  Google Scholar 

  128. Thunman H et al (2019) Circular use of plastics-transformation of existing petrochemical clusters into thermochemical recycling plants with 100% plastics recovery. Sustain Mater Technol 22:e00124. https://doi.org/10.1016/J.SUSMAT.2019.E00124

    Article  Google Scholar 

  129. Sardon H, Dove AP (2018) Plastics recycling with a difference: a novel plastic with useful properties can easily be recycled again and again. Science 360(6387):380–381. https://doi.org/10.1126/science.aat4997

    Article  Google Scholar 

  130. Zhu JB, Watson EM, Tang J, Chen EYX (2018) A synthetic polymer system with repeatable chemical recyclability. Science (1979) 360(6387):398–403. https://doi.org/10.1126/SCIENCE.AAR5498/SUPPL_FILE/AAR5498-ZHU-SM.PDF

    Article  Google Scholar 

  131. Christensen PR, Scheuermann AM, Loeffler KE, Helms BA (2019) Closed-loop recycling of plastics enabled by dynamic covalent diketoenamine bonds. Nat Chem 11(5):442–448. https://doi.org/10.1038/s41557-019-0249-2

    Article  Google Scholar 

  132. Baker MS, Kim H, Olah MG, Lewis GG, Phillips ST (2015) Depolymerizable poly(benzyl ether)-based materials for selective room temperature recycling. Green Chem 17(9):4541–4545. https://doi.org/10.1039/C5GC01090J

    Article  Google Scholar 

  133. DiLauro AM, Lewis GG, Phillips ST (2015) Self-immolative Poly(4,5-dichlorophthalaldehyde) and its applications in multi-stimuli-responsive macroscopic plastics. Angew Chem 127(21):6298–6303. https://doi.org/10.1002/ANGE.201501320

    Article  Google Scholar 

  134. García JM et al (2014) Recyclable, strong thermosets and organogels via paraformaldehyde condensation with diamines. Science (1979) 344(6185):732–735. https://doi.org/10.1126/SCIENCE.1251484/SUPPL_FILE/GARCIA.SM.PDF

    Article  Google Scholar 

  135. Sagi A, Weinstain R, Karton N, Shabat D (2008) Self-immolative polymers the increasing need for effective diagnostic. J Am Chem Soc. https://doi.org/10.1021/ja801065d

    Article  Google Scholar 

  136. Fan B, Trant JF, Wong AD, Gillies ER (2014) Polyglyoxylates: a versatile class of triggerable self-immolative polymers from readily accessible monomers. J Am Chem Soc. https://doi.org/10.1021/ja504727u

    Article  Google Scholar 

  137. Ogden WA, Guan Z (2018) Recyclable, strong, and highly malleable thermosets based on boroxine networks. J Am Chem Soc. https://doi.org/10.1021/jacs.8b03257

    Article  Google Scholar 

  138. Patel V, Popli S, Bhatt D (2014) Utilization of plastic waste in construction of roads. Int J Sci Res 3(4):161–163

    Google Scholar 

  139. Appiah JK, Berko-Boateng VN, Tagbor TA (2017) Use of waste plastic materials for road construction in Ghana. Case Stud Constr Mater 6:1–7. https://doi.org/10.1016/J.CSCM.2016.11.001

    Article  Google Scholar 

  140. Royer SJ, Ferrón S, Wilson ST, Karl DM (2018) Production of methane and ethylene from plastic in the environment. PLoS ONE 13(8):e0200574. https://doi.org/10.1371/JOURNAL.PONE.0200574

    Article  Google Scholar 

  141. I Bayrakdar (2021) Japanese Inventor Built a Machine That Turns Plastic Bags into Oil, Irmak Bayrakdar. https://interestingengineering.com/japanese-invention-converts-plastic-into-oil. Accessed 12 Mar 2022

  142. K Systems, Large Scale Plastics Pyrolysis System to Diesel Fuel | Cogeneration & Recycling Technology | Klean Industries. https://kleanindustries.com/waste-processing-projects/plastic-pyrolysis-recycling/spr-japan/. Accessed 12 Mar 2022

  143. Turning plastic pollution into green energy—Who we Are—Newcastle University. https://www.ncl.ac.uk/who-we-are/vision/green-energy/. Accessed 12 Mar 12 2022

  144. Divya VC, Ameen Khan M, Nageshwar Rao B, Sailaja RRN (2015) High density polyethylene/cenosphere composites reinforced with multi-walled carbon nanotubes: mechanical, thermal and fire retardancy studies. Mater Design (1980–2015) 65:377–386. https://doi.org/10.1016/J.MATDES.2014.08.076

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the Indian Institute of Technology (Banaras Hindu University) Varanasi’s Seed Grant Ref. No. IIT (BHU)/Budget/19-(14)/2021-22/2268 dated 06-July-2021 as well as Department of Science and Technology (DST), Government of India’s Project No. DST/SEED/SUTRA/2020/132(G) dated 24-June-2021, both to ASD.

Author information

Authors and Affiliations

Authors

Contributions

KPP: Conceptualization-Equal, Investigation-Equal, Data curation-Equal, Formal analysis-Lead, Methodology-Equal, Validation-Equal, Visualization-Equal, Writing—original draft-Lead; URJ: Methodology-Equal, Resources-Equal, Validation-Equal, Writing—review and editing-Equal; JK: Writing review and editing, Investigation-Equal, Data curation-Equal; MP: Writing review and editing, Investigation-Equal, Formal analysis-Supporting; SUM: Data curation-Supporting, Formal analysis-Supporting, Investigation-Supporting; ASD: Conceptualization-Lead, Data curation-Supporting, Formal analysis-Supporting, Funding acquisition-Lead, Investigation-Supporting, Methodology-Supporting, Project administration-Lead, Resources-Lead, Supervision-Lead, Validation-Lead, Visualization-Supporting, Writing—original draft-Supporting, Writing—review and editing-Equal.

Corresponding author

Correspondence to Abhishek S. Dhoble.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, K.P., Jha, U.R., Kushwaha, J. et al. Practical ways to recycle plastic: current status and future aspects. J Mater Cycles Waste Manag 25, 1249–1266 (2023). https://doi.org/10.1007/s10163-023-01611-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-023-01611-0

Keywords

Navigation