Skip to main content
Log in

Preparation and characterization of cellulose nanocrystals from spent culture substrate of Auricularia auricula

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

The culture substrate of Auricularia auricula contains lots of wood residues, which is not easy to compost or be used to produce feed. In this study, the spent culture substrate of Auricularia auricula (SSA) was used as raw material to prepare cellulose nanocrystals (CNCs). The CNCs were prepared by hydrolysis of the cellulose extracted from SSA (SSAC) with H2SO4 aqueous solution. The effect of concentration of H2SO4, acid hydrolysis temperature and hydrolysis time on the properties of CNCs and the reaction mechanism were studied. When the cellulose extracted from SSA (SSAC) was treated with 45 wt% H2SO4 at 45 °C for 120 min, the obtained CNCs was slender needle-like and the yield was 67.25 wt% (based on the mass of cellulose from pretreated SSA). The obtained CNCs in this condition have a crystallinity of 73.15% and the diameter distribute between 4 and 16 nm. The results show that the residual wood in SSA could prepare CNCs with higher crystallinity and smaller particle size under a more moderate condition. This study provides a new approach for the reuse of spent culture substrate of Auricularia auricula as well as a new cheap raw material for preparation of CNCs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Winter A, Arminger B, Veigel S, Gusenbauer C, Fischer W, Mayr M, Bauer W, Gindl-Altmutter W (2020) Nanocellulose from fractionated sulfite wood pulp. Cellulose 27:9325–9336. https://doi.org/10.1007/s10570-020-03428-8

    Article  Google Scholar 

  2. Brito BSL, Pereira FV, Putaux JL, Jean B (2012) Preparation, morphology and structure of cellulose nanocrystals from bamboo fibers. Cellulose 19:1527–1536. https://doi.org/10.1007/s10570-012-9738-9

    Article  Google Scholar 

  3. Rajala S, Siponkoski T, Sarlin E, Mettänen M, Vuoriluoto M, Pammo A, Juuti J, Rojas OJ, Franssila S, Tuukkanen S (2016) Cellulose nanofibril film as a piezoelectric sensor material. ACS Appl Mater Interfaces 8(24):15607–15614. https://doi.org/10.1021/acsami.6b03597

    Article  Google Scholar 

  4. Klemm D, Cranston ED, Fischer D, Gama M, Kedzior SA, Kralisch D, Kramer F, Kondo T, Lindström T, Nietzsche S, Petzold-Welcke K, Rauchfu F (2018) Nanocellulose as a natural source for groundbreaking applications in materials science: today’s state. Mater Today 21(7):720–748. https://doi.org/10.1016/j.mattod.2018.02.001

    Article  Google Scholar 

  5. Lu Q, Tang L, Wang S, Huang B, Chen Y, Chen X (2014) An investigation on the characteristics of cellulose nanocrystals from Pennisetum sinese. Biomass Bioenergy 70:267–272. https://doi.org/10.1016/j.biombioe.2014.09.012

    Article  Google Scholar 

  6. Miao X, Lin J, Bian F (2020) Utilization of discarded crop straw to produce cellulose nanofibrils and their assemblies. J Bioresour Bioprod 5(1):26–36. https://doi.org/10.1016/j.jobab.2020.03.003

    Article  Google Scholar 

  7. Hafemann E, Battisti R, Bresolin D, Marangoni C, Machado RAF (2020) Enhancing chlorine-free purification routes of rice husk biomass waste to obtain cellulose nanocrystals. Waste Biomass Valori 11(12):6595–6611. https://doi.org/10.1007/s12649-020-00937-2

    Article  Google Scholar 

  8. Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose: the effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromol 5(5):1983–1989. https://doi.org/10.1021/bm0497769

    Article  Google Scholar 

  9. Abushammala H, Krossing I, Laborie MP (2015) Ionic liquid-mediated technology to produce cellulose nanocrystals directly from wood. Carbohydr Polym 134(10):609–616. https://doi.org/10.1016/j.carbpol.2015.07.079

    Article  Google Scholar 

  10. Kiper AG, Özyuguran A, Yaman S (2020) Electrospun cellulose nanofibers from toilet paper. J Mater Cycles Waste Manag 22:1999–2011. https://doi.org/10.1007/s10163-020-01085-4

    Article  Google Scholar 

  11. Oksman K, Etang JA, Mathew AP, Jonoobi M (2011) Cellulose nanowhiskers separated from a bio-residue from wood bioethanol production. Biomass Bioenergy 35(1):146–152. https://doi.org/10.1016/j.biombioe.2010.08.021

    Article  Google Scholar 

  12. Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed Engl 50(24):5438–5466. https://doi.org/10.1002/anie.201001273

    Article  Google Scholar 

  13. Abdul Rahman NH, Chieng BW, Ibrahim NA, Abdul Rahman N (2017) Extraction and characterization of cellulose nanocrystals from tea-leaf waste fibers. Polymers 9(11):588. https://doi.org/10.3390/polym9110588

    Article  Google Scholar 

  14. Zhang P, Tong D, Lin C, Yang H, Zhong Z, Yu W, Wang H, Zhou C (2014) Effects of acid treatments on bamboo cellulose nanocrystals. Asia Pac J Chem Eng 9(5):686–695. https://doi.org/10.1002/apj.1812

    Article  Google Scholar 

  15. Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromol 6(2):1048–1054. https://doi.org/10.1021/bm049300p

    Article  Google Scholar 

  16. Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13(2):171–180. https://doi.org/10.1007/s10570-006-9061-4

    Article  Google Scholar 

  17. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994. https://doi.org/10.1039/C0CS00108B

    Article  Google Scholar 

  18. Vikman M, Vartiainen J, Tsitko I, Korhonen P (2015) Biodegradability and compost ability of nanofibrillar cellulose-based products. J Polym Environ 23:206–215. https://doi.org/10.1007/s10924-014-0694-3

    Article  Google Scholar 

  19. Wang Y, Wei X, Li J, Wang F, Wang Q, Zhang Y, Kong L (2017) Homogeneous isolation of nanocellulose from eucalyptus pulp by high pressure homogenization. Ind Crop Prod 104:237–241. https://doi.org/10.1016/j.indcrop.2017.04.032

    Article  Google Scholar 

  20. Diop CIK, Lavoie JM (2017) Isolation of nanocrystalline cellulose: a technological route for valorizing recycled tetra pak aseptic multilayered food packaging wastes. Waste Biomass Valori 8(1):41–56. https://doi.org/10.1007/s12649-016-9585-2

    Article  Google Scholar 

  21. Tan XY, Abd Hamid SB, Lai CW (2015) Preparation of high crystallinity cellulose nanocrystals (CNCs) by ionic liquid solvolysis. Biomass Bioenergy 81:584–591. https://doi.org/10.1016/j.biombioe.2015.08.016

    Article  Google Scholar 

  22. Azam M, Jahromy SS, Raza W, Raza N, Lee SS, Kim KH, Winter F (2020) Status, characterization, and potential utilization of municipal solid waste as renewable energy source: Lahore case study in Pakistan. Environ Int 134:105291. https://doi.org/10.1016/j.envint.2019.105291

    Article  Google Scholar 

  23. Mohd Hanafi FH, Rezania S, Mat Taib S, Md Din MF, Yamauchi M, Sakamoto M, Hara H, Park J, Ebrahimi SS (2018) Environmentally sustainable applications of agro-based spent mushroom substrate (SMS): an overview. J Mater Cycles Waste Manag 20:1383–1396. https://doi.org/10.1007/s10163-018-0739-0

    Article  Google Scholar 

  24. Van Soest PJ, Wine RH (1967) Use of detergents in the analysis of fibrous feeds, IV. Determination of plant cell-wall constituents. J Assoc Off Anal Chem 50:50–55. https://doi.org/10.1093/jaoac/50.1.50

    Article  Google Scholar 

  25. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794. https://doi.org/10.1177/004051755902901003

    Article  Google Scholar 

  26. Park S, Baker J, Himmel M, Parilla P, Johnson D (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10. https://doi.org/10.1186/1754-6834-3-10

    Article  Google Scholar 

  27. Jiang F, Hsieh YL (2013) Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydr Polym 95(1):32–40. https://doi.org/10.1016/j.carbpol.2013.02.022

    Article  Google Scholar 

  28. Wang J, Wang Q, Wu Y, Bai F, Wang H, Si S, Lu Y, Li X, Wang S (2020) Preparation of cellulose nanofibers from bagasse by phosphoric acid and hydrogen peroxide enables fibrillation via a swelling, hydrolysis, and oxidation cooperative mechanism. Nanomaterials 10(11):2227. https://doi.org/10.3390/nano10112227

    Article  Google Scholar 

  29. Lu P, Hsieh YL (2012) Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydr Polym 87(1):564–573. https://doi.org/10.1016/j.carbpol.2011.08.022

    Article  Google Scholar 

  30. Langkilde FW, Svantesson A (1995) Identification of celluloses with Fourier-Transform (FT) mid-infrared, FT-Raman and near-infrared spectrometry. J Pharm Biomed 13(4–5):409–414. https://doi.org/10.1016/0731-7085(95)01298-Y

    Article  Google Scholar 

  31. Baranov A, Sommerhoff F, Duchemin B, Curnow O, Staiger MP (2021) Toward a facile fabrication route for all-cellulose composite laminates via partial dissolution in aqueous tetrabutylphosphonium hydroxide solution. Compos Part A Appl Sci Manuf 140:106148. https://doi.org/10.1016/j.compositesa.2020.106148

    Article  Google Scholar 

  32. Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12–13):1781–1788. https://doi.org/10.1016/j.fuel.2006.12.013

    Article  Google Scholar 

  33. Tonoli GHD, Teixeira EM, Corrêa AC, Marconcini JM, Caixeta LA, Pereira-da-Silva MA, Mattoso LHC (2012) Cellulose micro/nanofibres from Eucalyptus kraft pulp: preparation and properties. Carbohydr Polym 89(1):80–88. https://doi.org/10.1016/j.carbpol.2012.02.052

    Article  Google Scholar 

  34. Chen X, Yu J, Zhang Z, Lu C (2011) Study on structure and thermal stability properties of cellulose fibers from rice straw. Carbohydr Polym 85(1):245–250. https://doi.org/10.1016/j.carbpol.2011.02.022

    Article  Google Scholar 

  35. Wang Z, Yao Z, Zhou J, Zhang Y (2017) Reuse of waste cotton cloth for the extraction of cellulose nanocrystals. Carbohydr Polym 157:945–952. https://doi.org/10.1016/j.carbpol.2016.10.044

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2021YFD1600402), the Xi'an Science and Technology Plan (No. 22GXFW0071) and National Natural Science Foundation of China (No. 52000151).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changqing Fang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, J., Zhang, X., Yang, M. et al. Preparation and characterization of cellulose nanocrystals from spent culture substrate of Auricularia auricula. J Mater Cycles Waste Manag 25, 2915–2924 (2023). https://doi.org/10.1007/s10163-023-01724-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-023-01724-6

Keywords

Navigation