Skip to main content

Advertisement

Log in

Mercury recycling technologies in its’ end-of-life management: a review

  • SPECIAL FEATURE: REVIEW
  • Mercury cycles and their management
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Mercury (Hg) is a naturally occurring chemical found in rock and coal deposits that can exist in various forms, including elemental Hg, inorganic Hg compounds, methylmercury, and other organic compounds. Exposure to Hg, primarily inorganic Hg, can have severe environmental and occupational hazards and harm human health. Therefore, it is crucial to understand the complex natural transformations and cyclic environmental processes of Hg and its impact on human health and the ecosystem. Both natural and human activities are mainly responsible for the Hg cycles in the environment. Combustion of fossil fuel and subsequent smelting activities are the primary sources from nature for the Hg cycles, while human activities like industrial processes and the use of products containing mercury also contribute to Hg in the environment. These sources ultimately release elemental Hg into the environment, and this Hg vapor can stay in the atmosphere for years and spread throughout the environment via various media. Besides, the whole process repeats and completes the Hg cycle. This review provides detailed knowledge of Hg cycles in the environment, proper end-of-life management of mercury-contained products, and the most up-to-date compilation of Hg recycling technologies, emphasizing the importance of proper Hg waste management. The study also emphasizes the need for a clear understanding of the relationship between local conditions and Hg levels in the environment to forecast Hg concentrations and their ability to be absorbed by living matter. The study also highlights the significance of suitable collection and recovery of Hg waste to prevent its improper disposal, which may lead to contamination of the air, rivers, lakes, and drinking water, thus increasing the risk to the environment and human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data underlying the results are available as part of the article, and no additional source data are required.

References

  1. USEPA (2020) Basic information about mercury. United States Environ Prot Agency. https://www.epa.gov/mercury/basic-information-about-mercury. Accessed 12 Dec 2022

  2. Environmental Protection Agency of the United States (2021) Health effects of exposures to mercury. Environ Prot Agency United States. https://www.epa.gov/mercury/health-effects-exposures-mercury#metallic%0Ahttps://www.epa.gov/mercury/health-effects-exposures-mercury. Accessed 13 Dec 2022

  3. Brosset C (1981) The mercury cycle - Preliminary communication. Water Air Soil Pollut. https://www.canada.ca/en/environment-climate-change/services/pollutants/mercury-environment/about/cycle.html. Accessed 12 Dec 2022

  4. Proper disposal of mercury-containing products and how to manage a mercury spill | department of environmental conservation. https://dec.vermont.gov/waste-management/solid/product-stewardship/mercury/proper-disposal. Accessed 13 Dec 2022

  5. Qu P, Pang M, Wang P et al (2022) Bioaccumulation of mercury along continuous fauna trophic levels in the Yellow River Estuary and adjacent sea indicated by nitrogen stable isotopes. J Hazard Mater 432:128631. https://doi.org/10.1016/j.jhazmat.2022.128631

    Article  Google Scholar 

  6. Oken E, Bellinger DC (2008) Fish consumption, methylmercury and child neurodevelopment. Curr Opin Pediatr 20:178–183. https://doi.org/10.1097/MOP.0b013e3282f5614c

    Article  Google Scholar 

  7. Bashir I, Lone FA, Bhat RA et al (2020) Concerns and threats of contamination on aquatic ecosystems. Bioremediation Biotechnol 1–26. https://doi.org/10.1007/978-3-030-35691-0_1

  8. Zaynab M, Al-Yahyai R, Ameen A et al (2022) Health and environmental effects of heavy metals. J King Saud Univ 34:101653

    Article  Google Scholar 

  9. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. EXS 101:133–164. https://doi.org/10.1007/978-3-7643-8340-4_6

    Article  Google Scholar 

  10. Briffa J, Sinagra E, Blundell R (2020) Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 6:e04691. https://doi.org/10.1016/j.heliyon.2020.e04691

    Article  Google Scholar 

  11. Asmatulu E, Andalib MN, Subeshan B, Abedin F (2022) Impact of nanomaterials on human health: a review. Environ Chem Lett 20:2509–2529. https://doi.org/10.1007/s10311-022-01430-z

    Article  Google Scholar 

  12. Fernandes Azevedo B, Barros Furieri L, Peçanha FMI et al (2012) Toxic effects of mercury on the cardiovascular and central nervous systems. J Biomed Biotechnol. https://doi.org/10.1155/2012/949048

    Article  Google Scholar 

  13. Rafati-Rahimzadeh M, Rafati-Rahimzadeh M, Kazemi S, Moghadamnia AA (2014) Current approaches of the management of mercury poisoning: need of the hour. DARU J Pharm Sci 22:1–10. https://doi.org/10.1186/2008-2231-22-46

    Article  Google Scholar 

  14. Mitra S, Chakraborty AJ, Tareq AM et al (2022) Impact of heavy metals on the environment and human health: novel therapeutic insights to counter the toxicity. J King Saud Univ Sci 34:101865. https://doi.org/10.1016/j.jksus.2022.101865

    Article  Google Scholar 

  15. Ekawanti A, Krisnayanti BD (2016) Response to “Comment on ‘Effect of Mercury Exposure on Renal Function and Hematological Parameters among Artisanal and Small-scale Gold Miners at Sekotong, West Lombok, Indonesia.’” J Heal Pollut 6:104–104. https://doi.org/10.5696/2156-9614-6.10.104

    Article  Google Scholar 

  16. Driscoll CT, Mason RP, Chan HM et al (2013) Mercury as a global pollutant: sources, pathways, and effects. Environ Sci Technol 47:4967–4983. https://doi.org/10.1021/es305071v

    Article  Google Scholar 

  17. Kirk JL, Lehnherr I, Andersson M et al (2012) Mercury in Arctic marine ecosystems: sources, pathways and exposure. Environ Res 119:64–87. https://doi.org/10.1016/j.envres.2012.08.012

    Article  Google Scholar 

  18. Brigham ME, Wentz DA, Aiken GR, Krabbenhoft DP (2009) Mercury cycling in stream ecosystems. 1. Water column chemistry and transport. Environ Sci Technol 43:2720–2725

    Article  Google Scholar 

  19. Obrist D, Kirk JL, Zhang L et al (2018) A review of global environmental mercury processes in response to human and natural perturbations: changes of emissions, climate, and land use. Ambio 47:116–140

    Article  Google Scholar 

  20. Demarty M, Bilodeau F, Tremblay A (2021) Mercury export from freshwater to estuary: carbocentric science elucidates the fate of a toxic compound in aquatic boreal environments. Front Environ Sci 9:697563

    Article  Google Scholar 

  21. Gworek B, Dmuchowski W, Baczewska-Dkabrowska AH (2020) Mercury in the terrestrial environment: a review. Environ Sci Eur 32:1–19

    Article  Google Scholar 

  22. Lutter R, Irwin E (2002) Mercury in the environment: a volatile problem. Environment 44:24–40. https://doi.org/10.1080/00139157.2002.10543561

    Article  Google Scholar 

  23. Cycle TM, Sampling M, Clean-up M (2014) Mercury in the environment and water supply. https://people.uwec.edu/piercech/Hg/mercury_water/cycling.htm. Accessed 12 Sep 2022

  24. Li F, Ma C, Zhang P (2020) Mercury deposition, climate change and anthropogenic activities: a review. Front Earth Sci 8:316

    Article  Google Scholar 

  25. Abelsohn A, Gibson BL, Sanborn MD, Weir E (2002) Identifying and managing adverse environmental health effects: 5. Persistent organic pollutants. C Can Med Assoc J 166:1549–1554

    Google Scholar 

  26. Tanzim F, Subeshan B, Asmatulu R (2022) Improving the saline water evaporation rates using highly conductive carbonaceous materials under infrared light for improved freshwater production. Desalination 531:115710. https://doi.org/10.1016/j.desal.2022.115710

    Article  Google Scholar 

  27. Selin NE (2009) Global biogeochemical cycling of mercury: a review. Annu Rev Environ Resour 34:43–63. https://doi.org/10.1146/annurev.environ.051308.084314

    Article  Google Scholar 

  28. United States Environmental Protection Agency Storing, Transporting and Disposing of Mercury | US EPA. https://www.epa.gov/mercury/storing-transporting-and-disposing-mercury. Accessed 12 May 2022

  29. USEPA (1996) Land disposal restrictions for hazardous waste. https://www.epa.gov/hw/land-disposal-restrictions-hazardous-waste. Accessed 12 Oct 2022

  30. Mercury bearing waste disposal. https://ehs.research.uiowa.edu/mercury-bearing-waste-disposal. Accessed 12 Nov 2022

  31. Ahmed T, Mohammed Q, Subeshan B et al (2022) Improving flame retardancy and hydrophobicity of fabrics via graphene inclusion obtained from recycled batteries. Mater Today Proc 71:78–89. https://doi.org/10.1016/j.matpr.2022.07.469

    Article  Google Scholar 

  32. Baldé K, D’Angelo E, Forti V et al (2018) Waste Mercury Perspective: 2010–2035 From global to regional. https://collections.unu.edu/view/UNU:6712#viewAttachments. Accessed 12 Dec 2022

  33. Takaoka M (2015) Mercury and mercury-containing waste management in Japan. J Mater Cycles Waste Manag 17:665–672. https://doi.org/10.1007/s10163-014-0325-z

    Article  Google Scholar 

  34. Utah Department of Environmental Quality. Mercury. https://deq.utah.gov/water-quality/mercury. Accessed 12 Dec 2022

  35. Ward DM, Nislow KH, Folt CL (2010) Bioaccumulation syndrome: identifying factors that make some stream food webs prone to elevated mercury bioaccumulation. Ann N Y Acad Sci 1195:62–83

    Article  Google Scholar 

  36. Schroeder WH, Munthe J (1998) Atmospheric mercury—an overview. Atmos Environ 32:809–822

    Article  Google Scholar 

  37. Rumayor M, Diaz-Somoano M, Lopez-Anton MA, Martinez-Tarazona MR (2013) Mercury compounds characterization by thermal desorption. Talanta 114:318–322. https://doi.org/10.1016/j.talanta.2013.05.059

    Article  Google Scholar 

  38. Shedd ES, Scheiner BJ, Lindstrom RE (1975) Recovery of mercury from cinnabar ores by electrooxidation - extraction plant amenability tests. US Department of the Interior, Bureau of Mines

    Google Scholar 

  39. Electrical F, Wastes M (1994) Characterization and recovery of mercury by thermal desorption. (ISSN 1066-5552)

  40. Chalkidis A, Jampaiah D, Aryana A et al (2020) Mercury-bearing wastes: sources, policies and treatment technologies for mercury recovery and safe disposal. J Environ Manage 270:110945. https://doi.org/10.1016/j.jenvman.2020.110945

    Article  Google Scholar 

  41. Lee CH, Popuri SR, Peng YH et al (2015) Overview on industrial recycling technologies and management strategies of end-of-life fluorescent lamps in Taiwan and other developed countries. J Mater Cycles Waste Manag 17:312–323. https://doi.org/10.1007/s10163-014-0253-y

    Article  Google Scholar 

  42. Back SK, Lee ES, Seo YC, Jang HN (2020) The effect of NaOH for the recovery of elemental mercury from simulated mixture wastes and waste sludge from an industrial process using a thermal desorption process. J Hazard Mater 384:121291. https://doi.org/10.1016/j.jhazmat.2019.121291

    Article  Google Scholar 

  43. Esbrí JM, Rivera S, Tejero J, Higueras PL (2021) Feasibility study of fluorescent lamp waste recycling by thermal desorption. Environ Sci Pollut Res 28:61860–61868. https://doi.org/10.1007/s11356-021-16800-3

    Article  Google Scholar 

  44. Chang TC, Chen CM, Lee YF, You SJ (2010) Mercury recovery from cold cathode fluorescent lamps using thermal desorption technology. Waste Manag Res 28:455–460. https://doi.org/10.1177/0734242X09335694

    Article  Google Scholar 

  45. Anwari RA, Coskun S, Saltan M (2022) Research on recycle of waste fluorescent lamp glasses and use as mineral filler in asphalt mixture. J Mater Cycles Waste Manag. https://doi.org/10.1007/s10163-022-01525-3

    Article  Google Scholar 

  46. Shen F, Liu J, Wu D et al (2019) Development of O 2 and NO Co-doped porous carbon as a high-capacity mercury sorbent. Environ Sci Technol 53:1725–1731. https://doi.org/10.1021/acs.est.8b05777

    Article  Google Scholar 

  47. Lee C-S, Fisher NS (2017) Bioaccumulation of methylmercury in a marine diatom and the influence of dissolved organic matter. Mar Chem 197:70–79

    Article  Google Scholar 

  48. Yang W, Wang Z, Liu Y (2020) Review on magnetic adsorbents for removal of elemental mercury from flue gas. Energy Fuels 34:13473–13490. https://doi.org/10.1021/acs.energyfuels.0c02931

    Article  Google Scholar 

  49. Yang Z, Li H, Liao C et al (2018) Magnetic rattle-type Fe3O4@CuS nanoparticles as recyclable sorbents for mercury capture from coal combustion flue gas. ACS Appl Nano Mater 1:4726–4736. https://doi.org/10.1021/acsanm.8b00948

    Article  Google Scholar 

  50. Zhang LX, Zhang AC, Zhu QF et al (2018) Effects of experimental parameters on Hg0 removal over magnetic AgI-BiOI/CoFe2O4 photocatalysts using wet process. Ranliao Huaxue Xuebao/J Fuel Chem Technol 46:365–374. https://doi.org/10.1016/s1872-5813(18)30016-1

    Article  Google Scholar 

  51. Yang J, Zhao Y, Liang S et al (2018) Magnetic iron–manganese binary oxide supported on carbon nanofiber (Fe3−xMnxO4/CNF) for efficient removal of Hg0 from coal combustion flue gas. Chem Eng J 334:216–224. https://doi.org/10.1016/j.cej.2017.10.004

    Article  Google Scholar 

  52. Cao T, Zhou Z, Chen Q et al (2017) Magnetically responsive catalytic sorbent for removal of Hg0 and NO. Fuel Process Technol 160:158–169. https://doi.org/10.1016/j.fuproc.2017.02.022

    Article  Google Scholar 

  53. Safari E, Ansari M, Ghazban F (2017) Preliminary assessment of cement kiln dust in solidification and stabilization of mercury containing waste from a chlor-alkali unit. J Mater Cycles Waste Manag 19:406–412. https://doi.org/10.1007/s10163-015-0437-0

    Article  Google Scholar 

  54. Hadi P, To MH, Hui CW et al (2015) Aqueous mercury adsorption by activated carbons. Water Res 73:37–55. https://doi.org/10.1016/j.watres.2015.01.018

    Article  Google Scholar 

  55. Gupta K, Joshi P, Gusain R, Khatri OP (2021) Recent advances in adsorptive removal of heavy metal and metalloid ions by metal oxide-based nanomaterials. Coord Chem Rev 445:214100. https://doi.org/10.1016/j.ccr.2021.214100

    Article  Google Scholar 

  56. Ugwu EI, Othmani A, Nnaji CC (2022) A review on zeolites as cost-effective adsorbents for removal of heavy metals from aqueous environment. Int J Environ Sci Technol 19:8061–8084. https://doi.org/10.1007/s13762-021-03560-3

    Article  Google Scholar 

  57. Anna M, Andrey F, Eugenia V (2022) Comparison of the performance of different methods to stabilize mercury-containing waste. J Mater Cycles Waste Manag 24:1134–1139. https://doi.org/10.1007/s10163-022-01386-w

    Article  Google Scholar 

  58. Liu J, Valsaraj KT, Devai I, DeLaune RD (2008) Immobilization of aqueous Hg(II) by mackinawite (FeS). J Hazard Mater 157:432–440. https://doi.org/10.1016/j.jhazmat.2008.01.006

    Article  Google Scholar 

  59. Salcedo ODC, Vargas DP, Giraldo L, Moreno-Piraján JC (2021) Study of mercury [Hg(II)] Adsorption from aqueous solution on functionalized activated carbon. ACS Omega 6:11849–11856. https://doi.org/10.1021/acsomega.0c06084

    Article  Google Scholar 

  60. Zou C, Liang J, Jiang W et al (2018) Adsorption behavior of magnetic bentonite for removing Hg(II) from aqueous solutions. RSC Adv 8:27587–27595. https://doi.org/10.1039/c8ra05247f

    Article  Google Scholar 

  61. Zhou Y, Luan L, Tang B et al (2020) Fabrication of Schiff base decorated PAMAM dendrimer/magnetic Fe3O4 for selective removal of aqueous Hg(II). Chem Eng J 398:125651. https://doi.org/10.1016/j.cej.2020.125651

    Article  Google Scholar 

  62. Zhao J, Niu Y, Ren B et al (2018) Synthesis of Schiff base functionalized superparamagnetic Fe3O4 composites for effective removal of Pb(II) and Cd(II) from aqueous solution. Chem Eng J 347:574–584. https://doi.org/10.1016/j.cej.2018.04.151

    Article  Google Scholar 

  63. Niu Y, Qu R, Chen H et al (2014) Synthesis of silica gel supported salicylaldehyde modified PAMAM dendrimers for the effective removal of Hg(II) from aqueous solution. J Hazard Mater 278:267–278. https://doi.org/10.1016/j.jhazmat.2014.06.012

    Article  Google Scholar 

  64. Zunita M (2021) Graphene oxide-based nanofiltration for Hg removal from wastewater: a mini review. Membranes (Basel) 11:269. https://doi.org/10.3390/membranes11040269

    Article  Google Scholar 

  65. Gao W, Majumder M, Alemany LB et al (2011) Engineered graphite oxide materials for application in water purification. ACS Appl Mater Interfaces 3:1821–1826. https://doi.org/10.1021/am200300u

    Article  Google Scholar 

  66. Kazemi A, Bahramifar N, Heydari A, Olsen SI (2019) Synthesis and sustainable assessment of thiol-functionalization of magnetic graphene oxide and superparamagnetic Fe3O4@SiO2 for Hg(II) removal from aqueous solution and petrochemical wastewater. J Taiwan Inst Chem Eng 95:78–93. https://doi.org/10.1016/j.jtice.2018.10.002

    Article  Google Scholar 

  67. Tene T, Arias Arias F, Guevara M et al (2022) Removal of mercury(II) from aqueous solution by partially reduced graphene oxide. Sci Rep 12:1–12. https://doi.org/10.1038/s41598-022-10259-z

    Article  Google Scholar 

  68. Ge H, Du J (2020) Selective adsorption of Pb(II) and Hg(II) on melamine-grafted chitosan. Int J Biol Macromol 162:1880–1887

    Article  Google Scholar 

  69. Wang J, Deng B, Chen H et al (2009) Removal of aqueous Hg(II) by polyaniline: Sorption characteristics and mechanisms. Environ Sci Technol 43:5223–5228. https://doi.org/10.1021/es803710k

    Article  Google Scholar 

  70. Rani L, Srivastav AL, Kaushal J (2021) Bioremediation: an effective approach of mercury removal from the aqueous solutions. Chemosphere 280:130654. https://doi.org/10.1016/j.chemosphere.2021.130654

    Article  Google Scholar 

  71. Chaudhuri S, Sigmund G, Bone SE et al (2022) Mercury removal from contaminated water by wood-based biochar depends on natural organic matter and ionic composition. Environ Sci Technol 56:11354–11362. https://doi.org/10.1021/acs.est.2c01554

    Article  Google Scholar 

  72. Raina SA, Van EB, Alonzo DE et al (2015) Trends in the precipitation and crystallization behavior of supersaturated aqueous solutions of poorly water-soluble drugs assessed using synchrotron radiation. J Pharm Sci 104:1981–1992. https://doi.org/10.1002/jps.24423

    Article  Google Scholar 

  73. Kang HY, Schoenung JM (2005) Electronic waste recycling: a review of U.S. infrastructure and technology options. Resour Conserv Recycl 45:368–400. https://doi.org/10.1016/j.resconrec.2005.06.001

    Article  Google Scholar 

  74. Pohl A (2020) Removal of heavy metal ions from water and wastewaters by sulfur-containing precipitation agents. Water Air Soil Pollut 231:1–17. https://doi.org/10.1007/s11270-020-04863-w

    Article  Google Scholar 

  75. Rajasulochana P, Preethy V (2016) Comparison on efficiency of various techniques in treatment of waste and sewage water – a comprehensive review. Resour Technol 2:175–184. https://doi.org/10.1016/j.reffit.2016.09.004

    Article  Google Scholar 

  76. Das TK, Poater A (2021) Review on the use of heavy metal deposits from water treatmentwaste towards catalytic chemical syntheses. Int J Mol Sci 22:13383. https://doi.org/10.3390/ijms222413383

    Article  Google Scholar 

  77. Rojas LA, Yáñez C, González M et al (2014) Characterization of the metabolically modified heavy metal-resistant Cupriavidus metallidurans strain MSR33 generated for mercury bioremediation. Heavy Met Contam Water Soil Anal Assess Remediat Strateg 2011:305–327. https://doi.org/10.1201/b16566

    Article  Google Scholar 

  78. Zhuang JM, Walsh T, Lam T (2003) A new technology for the treatment of mercury contaminated water and soils. Environ Technol (United Kingdom) 24:897–902. https://doi.org/10.1080/09593330309385626

    Article  Google Scholar 

  79. Blue LY, Jana P, Atwood DA (2010) Aqueous mercury precipitation with the synthetic dithiolate, BDTH2. Fuel 89:1326–1330. https://doi.org/10.1016/j.fuel.2009.10.031

    Article  Google Scholar 

  80. Vardhan KH, Kumar PS, Panda RC (2019) A review on heavy metal pollution, toxicity and remedial measures: current trends and future perspectives. J Mol Liq 290:111197. https://doi.org/10.1016/j.molliq.2019.111197

    Article  Google Scholar 

  81. Pang FM, Teng SP, Teng TT, Mohd Omar AK (2009) Heavy metals removal by hydroxide precipitation and coagulation-flocculation methods from aqueous solutions. Water Qual Res J Canada 44:174–182. https://doi.org/10.2166/wqrj.2009.019

    Article  Google Scholar 

  82. Vidu R, Matei E, Predescu AM et al (2020) Removal of heavy metals from wastewaters: a challenge from current treatment methods to nanotechnology applications. Toxics 8:1–37. https://doi.org/10.3390/toxics8040101

    Article  Google Scholar 

  83. Prokkola H, Nurmesniemi ET, Lassi U (2020) Removal of metals by sulphide precipitation using na2s and hs−-solution. ChemEngineering 4:1–10. https://doi.org/10.3390/chemengineering4030051

    Article  Google Scholar 

  84. Qasem NAA, Mohammed RH, Lawal DU (2021) Author Correction: removal of heavy metal ions from wastewater: a comprehensive and critical review (npj Clean Water, (2021), 4, 1, (36), 10.1038/s41545-021-00127-0). npj Clean Water 4:1–15. https://doi.org/10.1038/s41545-021-00144-z

    Article  Google Scholar 

  85. Elgarahy AM, Elwakeel KZ, Mohammad SH, Elshoubaky GA (2021) A critical review of biosorption of dyes, heavy metals and metalloids from wastewater as an efficient and green process. Clean Eng Technol 4:100209. https://doi.org/10.1016/j.clet.2021.100209

    Article  Google Scholar 

  86. Vijayan PP, Chithra PG, Krishna SVA et al (2022) Development and current trends on ion exchange materials. Sep Purif Rev. https://doi.org/10.1080/15422119.2022.2149413

    Article  Google Scholar 

  87. Gupta A, Sharma V, Sharma K et al (2021) A review of adsorbents for heavy metal decontamination: growing approach to wastewater treatment. Materials (Basel) 14:4702. https://doi.org/10.3390/ma14164702

    Article  Google Scholar 

  88. Verbych S, Hilal N, Sorokin G, Leaper M (2004) Ion exchange extraction of heavy metal ions from wastewater. Sep Sci Technol 39:2031–2040. https://doi.org/10.1081/SS-120039317

    Article  Google Scholar 

  89. Czupryński P, Płotka M, Glamowski P et al (2022) An assessment of an ion exchange resin system for the removal and recovery of Ni, Hg, and Cr from wet flue gas desulphurization wastewater—a pilot study. RSC Adv 12:5145–5156. https://doi.org/10.1039/d1ra09426b

    Article  Google Scholar 

  90. Monteagudo JM, Ortiz MJ (2000) Removal of inorganic mercury from mine waste water by ion exchange. J Chem Technol Biotechnol 75:767–772. https://doi.org/10.1002/1097-4660(200009)75:9%3c767::AID-JCTB281%3e3.0.CO;2-1

    Article  Google Scholar 

  91. Qu Z, Yan L, Li L et al (2014) Ultraeffective ZnS nanocrystals sorbent for mercury(II) removal based on size-dependent cation exchange. ACS Appl Mater Interfaces 6:18026–18032. https://doi.org/10.1021/am504896w

    Article  Google Scholar 

  92. Smith AM, Nie S (2011) Bright and compact alloyed quantum dots with broadly tunable near-infrared absorption and fluorescence spectra through mercury cation exchange. J Am Chem Soc 133:24–26. https://doi.org/10.1021/ja108482a

    Article  Google Scholar 

  93. Moradi G, Zinadini S, Rajabi L (2020) Development of the tetrathioterephthalate filler incorporated PES nanofiltration membrane with efficient heavy metal ions rejection and superior antifouling properties. J Environ Chem Eng 8:104431. https://doi.org/10.1016/j.jece.2020.104431

    Article  Google Scholar 

  94. Cevallos-Mendoza J, Amorim CG, Rodríguez-Díaz JM, da Montenegro MCBSM (2022) Removal of contaminants from water by membrane filtration: a review. Membranes (Basel) 12:570. https://doi.org/10.3390/membranes12060570

    Article  Google Scholar 

  95. Khulbe KC, Matsuura T (2018) Removal of heavy metals and pollutants by membrane adsorption techniques. Appl Water Sci 8:1–30. https://doi.org/10.1007/s13201-018-0661-6

    Article  Google Scholar 

  96. Rakib M, Baddam Y, Subeshan B et al (2022) Fabrication of spirulina based activated carbons for wastewater treatment. Environ Technol (United Kingdom). https://doi.org/10.1080/09593330.2022.2138557

    Article  Google Scholar 

  97. Oyarce E, Roa K, Boulett A et al (2021) Removal of dyes by polymer-enhanced ultrafiltration: an overview. Polymers (Basel) 13:3450. https://doi.org/10.3390/polym13193450

    Article  Google Scholar 

  98. Hakami MW, Alkhudhiri A, Al-Batty S et al (2020) Ceramic microfiltration membranes in wastewater treatment: filtration behavior, fouling and prevention. Membranes (Basel) 10:1–34. https://doi.org/10.3390/membranes10090248

    Article  Google Scholar 

  99. AJ S, R T, Yimam A (2018) Magnetic hetero-structures as prospective sorbents to aid arsenic elimination from life water streams. Water Sci 32:151–170. https://doi.org/10.1016/j.wsj.2017.05.001

    Article  Google Scholar 

  100. Oehmen A, Vergel D, Fradinho J et al (2014) Mercury removal from water streams through the ion exchange membrane bioreactor concept. J Hazard Mater 264:65–70. https://doi.org/10.1016/j.jhazmat.2013.10.067

    Article  Google Scholar 

  101. Bessbousse H, Rhlalou T, Verchère JF, Lebrun L (2010) Mercury removal from wastewater using a poly(vinylalcohol)/poly(vinylimidazole) complexing membrane. Chem Eng J 164:37–48. https://doi.org/10.1016/j.cej.2010.08.004

    Article  Google Scholar 

  102. Urgun-Demirtas M, Benda PL, Gillenwater PS et al (2012) Achieving very low mercury levels in refinery wastewater by membrane filtration. J Hazard Mater 215–216:98–107. https://doi.org/10.1016/j.jhazmat.2012.02.040

    Article  Google Scholar 

  103. Yu X, Liu W, Deng X et al (2018) Gold nanocluster embedded bovine serum albumin nanofibers-graphene hybrid membranes for the efficient detection and separation of mercury ion. Chem Eng J 335:176–184. https://doi.org/10.1016/j.cej.2017.10.148

    Article  Google Scholar 

  104. Aguado J, Arsuaga JM, Arencibia A (2008) Influence of synthesis conditions on mercury adsorption capacity of propylthiol functionalized SBA-15 obtained by co-condensation. Microporous Mesoporous Mater 109:513–524. https://doi.org/10.1016/j.micromeso.2007.05.061

    Article  Google Scholar 

  105. Vieira RS, Guibal E, Silva EA, Beppu MM (2007) Adsorption and desorption of binary mixtures of copper and mercury ions on natural and crosslinked chitosan membranes. Adsorption 13:603–611. https://doi.org/10.1007/s10450-007-9050-4

    Article  Google Scholar 

  106. López-Muñoz MJ, Aguado J, van Grieken R, Marugán J (2009) Simultaneous photocatalytic reduction of silver and oxidation of cyanide from dicyanoargentate solutions. Appl Catal B Environ 86:53–62. https://doi.org/10.1016/j.apcatb.2008.07.022

    Article  Google Scholar 

  107. López-Muñoz MJ, Aguado J, Arencibia A, Pascual R (2011) Mercury removal from aqueous solutions of HgCl2 by heterogeneous photocatalysis with TiO2. Appl Catal B Environ 104:220–228. https://doi.org/10.1016/j.apcatb.2011.03.029

    Article  Google Scholar 

  108. US EPA (2018) Recycling and disposal of CFLs and other bulbs that contain mercury. https://www.epa.gov/cfl/recycling-and-disposal-cfls-and-other-bulbs-contain-mercury. Accessed 13 Dec 2022

  109. Bussi J, Cabrera MN, Chiazzaro J et al (2010) The recovery and recycling of mercury from fluorescent lamps using photocatalytic techniques. J Chem Technol Biotechnol 85:478–484. https://doi.org/10.1002/jctb.2313

    Article  Google Scholar 

  110. Coskun S, Cirlengic M, Ozgur C et al (2013) The mercury recovery from the spent fluorescent lamps using chemical leaching and heterogeneous photocatalytic reduction. In: Sardinia 2013, 14th International waste management and landfill symposium

  111. Byrne HE, Mazyck DW (2009) Removal of trace level aqueous mercury by adsorption and photocatalysis on silica-titania composites. J Hazard Mater 170:915–919. https://doi.org/10.1016/j.jhazmat.2009.05.055

    Article  Google Scholar 

  112. Yang J, Li Q, Li M et al (2020) In situ decoration of selenide on copper foam for the efficient immobilization of gaseous elemental mercury. Environ Sci Technol 54:2022–2030. https://doi.org/10.1021/acs.est.9b07057

    Article  Google Scholar 

  113. Perumal S, Atchudan R, Yoon DH et al (2019) Spherical chitosan/gelatin hydrogel particles for removal of multiple heavy metal ions from wastewater. Ind Eng Chem Res 58:9900–9907. https://doi.org/10.1021/acs.iecr.9b01298

    Article  Google Scholar 

  114. Qu Z, Fang L, Chen D et al (2017) Effective and regenerable Ag/graphene adsorbent for Hg(II) removal from aqueous solution. Fuel 203:128–134. https://doi.org/10.1016/j.fuel.2017.04.105

    Article  Google Scholar 

  115. Abadast F, Mouradzadegun A, Ganjali MR (2017) Rational design, fabrication and characterization of a thiol-rich 3D-porous hypercrosslink polymer as a new engineered Hg2+ sorbent: enhanced selectivity and uptake. New J Chem 41:5458–5466. https://doi.org/10.1039/c7nj00663b

    Article  Google Scholar 

  116. Amara-Rekkab A, Didi MA (2016) Design optimization of extraction procedure for mercury (II) using Chelex 100 resin. Desalin Water Treat 57:6950–6958. https://doi.org/10.1080/19443994.2015.1012745

    Article  Google Scholar 

  117. Bhalara PD, Balasubramanian K, Banerjee BS (2015) Spider-web textured electrospun composite of graphene for sorption of Hg(II) ions. Mater Focus 4:154–163. https://doi.org/10.1166/mat.2015.1232

    Article  Google Scholar 

  118. Liu C, Yang S, Zhang C et al (2017) MoS2 nanosheets with widened interlayer spacing for high-efficiency removal of mercury in fule gas. 14th Int Symp East Asian Resour Recycl Technol EARTH 26:5542–5549

    Google Scholar 

  119. Ganguly M, Dib S, Ariya PA (2018) Fast, cost-effective and energy efficient mercury removal-recycling technology. Sci Rep 8:1–10. https://doi.org/10.1038/s41598-018-34172-6

    Article  Google Scholar 

  120. Bejan A, Doroftei F, Cheng X, Marin L (2020) Phenothiazine-chitosan based eco-adsorbents: a special design for mercury removal and fast naked eye detection. Int J Biol Macromol 162:1839–1848. https://doi.org/10.1016/j.ijbiomac.2020.07.232

    Article  Google Scholar 

  121. Alijani H, Shariatinia Z (2018) Synthesis of high growth rate SWCNTs and their magnetite cobalt sulfide nanohybrid as super-adsorbent for mercury removal. Chem Eng Res Des 129:132–149. https://doi.org/10.1016/j.cherd.2017.11.014

    Article  Google Scholar 

  122. Lin G, Wang S, Zhang L et al (2018) Selective and high efficient removal of Hg2+ onto the functionalized corn bract by hypophosphorous acid. J Clean Prod 192:639–646. https://doi.org/10.1016/j.jclepro.2018.05.043

    Article  Google Scholar 

  123. Chandra V, Kim KS (2011) Highly selective adsorption of Hg2+ by a polypyrrole–reduced graphene oxide composite. Chem Commun 47:3942–3944. https://doi.org/10.1039/c1cc00005e

    Article  Google Scholar 

  124. Movahedi F, Masrouri H, Tayyebi H (2018) Highly efficient adsorption behavior of benzoylthiourea functionalized graphene oxide with respect to the removal of Hg(II) from aqueous solutions: isothermal, kinetic and thermodynamic studies. Res Chem Intermed 44:5419–5438. https://doi.org/10.1007/s11164-018-3431-z

    Article  Google Scholar 

  125. Zarei S, Niad M, Raanaei H (2018) The removal of mercury ion pollution by using Fe3O4-nanocellulose: synthesis, characterizations and DFT studies. J Hazard Mater 344:258–273. https://doi.org/10.1016/j.jhazmat.2017.10.009

    Article  Google Scholar 

  126. Cibotaru S, Ailincai D, Andreica B-I et al (2022) TEGylated phenothiazine-imine-chitosan materials as a promising framework for mercury recovery. Gels 8:692. https://doi.org/10.3390/gels8110692

    Article  Google Scholar 

  127. Ravi S, Ahn WS (2018) Facile synthesis of a mesoporous organic polymer grafted with 2-aminoethanethiol for Hg2+ removal. Microporous Mesoporous Mater 271:59–67. https://doi.org/10.1016/j.micromeso.2018.05.038

    Article  Google Scholar 

  128. Sobhanardakani S, Zandipak R (2017) Synthesis and application of TiO2/SiO2/Fe3O4 nanoparticles as novel adsorbent for removal of Cd(II), Hg(II) and Ni(II) ions from water samples. Clean Technol Environ Policy 19:1913–1925. https://doi.org/10.1007/s10098-017-1374-5

    Article  Google Scholar 

  129. Geng B, Wang H, Wu S et al (2017) Surface-tailored nanocellulose aerogels with thiol-functional moieties for highly efficient and selective removal of Hg(II) ions from water. ACS Sustain Chem Eng 5:11715–11726. https://doi.org/10.1021/acssuschemeng.7b03188

    Article  Google Scholar 

  130. Sheela T, Nayaka YA, Viswanatha R et al (2012) Kinetics and thermodynamics studies on the adsorption of Zn(II), Cd(II) and Hg(II) from aqueous solution using zinc oxide nanoparticles. Powder Technol 217:163–170. https://doi.org/10.1016/j.powtec.2011.10.023

    Article  Google Scholar 

  131. Huang L, Peng C, Cheng Q et al (2017) Thiol-functionalized magnetic porous organic polymers for highly efficient removal of mercury. Ind Eng Chem Res 56:13696–13703. https://doi.org/10.1021/acs.iecr.7b03093

    Article  Google Scholar 

  132. Zhu H, Shen Y, Wang Q et al (2017) Highly promoted removal of Hg(II) with magnetic CoFe2O4@SiO2 core-shell nanoparticles modified by thiol groups. RSC Adv 7:39204–39215. https://doi.org/10.1039/c7ra06163c

    Article  Google Scholar 

  133. Daneshmand M, Outokesh M, Akbari A et al (2018) Synthesis of “L-cysteine–graphene oxide” hybrid by new methods and elucidation of its uptake properties for Hg(II) ion. Sep Sci Technol 53:843–855. https://doi.org/10.1080/01496395.2017.1418889

    Article  Google Scholar 

  134. Ifthikar J, Jiao X, Ngambia A et al (2018) Facile one-pot synthesis of sustainable carboxymethyl chitosan – sewage sludge biochar for effective heavy metal chelation and regeneration. Bioresour Technol 262:22–31. https://doi.org/10.1016/j.biortech.2018.04.053

    Article  Google Scholar 

  135. Tadjarodi A, Moazen Ferdowsi S, Zare-Dorabei R, Barzin A (2016) Highly efficient ultrasonic-assisted removal of Hg(II) ions on graphene oxide modified with 2-pyridinecarboxaldehyde thiosemicarbazone: adsorption isotherms and kinetics studies. Ultrason Sonochem 33:118–128. https://doi.org/10.1016/j.ultsonch.2016.04.030

    Article  Google Scholar 

  136. Saman N, Johari K, Song ST et al (2017) High removal efficacy of Hg(II) and MeHg(II) ions from aqueous solution by organoalkoxysilane-grafted lignocellulosic waste biomass. Chemosphere 171:19–30. https://doi.org/10.1016/j.chemosphere.2016.12.049

    Article  Google Scholar 

  137. Kyzas GZ, Travlou NA, Deliyanni EA (2014) The role of chitosan as nanofiller of graphite oxide for the removal of toxic mercury ions. Colloids Surfaces B Biointerfaces 113:467–476. https://doi.org/10.1016/j.colsurfb.2013.07.055

    Article  Google Scholar 

  138. Shan C, Ma Z, Tong M, Ni J (2015) Removal of Hg(II) by poly(1-vinylimidazole)-grafted Fe3O4 at SiO2 magnetic nanoparticles. Water Res 69:252–260. https://doi.org/10.1016/j.watres.2014.11.030

    Article  Google Scholar 

  139. Khazaei M, Nasseri S, Ganjali MR et al (2018) Selective removal of mercury(II) from water using a 2,2-dithiodisalicylic acid-functionalized graphene oxide nanocomposite: Kinetic, thermodynamic, and reusability studies. J Mol Liq 265:189–198. https://doi.org/10.1016/j.molliq.2018.05.048

    Article  Google Scholar 

  140. Cui L, Wang Y, Gao L et al (2015) EDTA functionalized magnetic graphene oxide for removal of Pb(II), Hg(II) and Cu(II) in water treatment: adsorption mechanism and separation property. Chem Eng J 281:1–10. https://doi.org/10.1016/j.cej.2015.06.043

    Article  Google Scholar 

  141. Hadavifar M, Bahramifar N, Younesi H et al (2016) Removal of mercury(II) and cadmium(II) ions from synthetic wastewater by a newly synthesized amino and thiolated multi-walled carbon nanotubes. J Taiwan Inst Chem Eng 67:397–405. https://doi.org/10.1016/j.jtice.2016.08.029

    Article  Google Scholar 

  142. de Brião GV, de Andrade JR, da Silva MGC, Vieira MGA (2020) Removal of toxic metals from water using chitosan-based magnetic adsorbents. A review. Environ Chem Lett 18:1145–1168. https://doi.org/10.1007/s10311-020-01003-y

    Article  Google Scholar 

  143. Zhang S, Zhang Y, Liu J et al (2013) Thiol modified Fe3O4@SiO2 as a robust, high effective, and recycling magnetic sorbent for mercury removal. Chem Eng J 226:30–38. https://doi.org/10.1016/j.cej.2013.04.060

    Article  Google Scholar 

  144. Sun M, Cheng G, Ge X et al (2018) Aqueous Hg(II) immobilization by chitosan stabilized magnetic iron sulfide nanoparticles. Sci Total Environ 621:1074–1083. https://doi.org/10.1016/j.scitotenv.2017.10.119

    Article  Google Scholar 

  145. Xiong YY, Li JQ, Le GL et al (2017) Using MOF-74 for Hg2+ removal from ultra-low concentration aqueous solution. J Solid State Chem 246:16–22. https://doi.org/10.1016/j.jssc.2016.10.018

    Article  Google Scholar 

  146. Wang M, Li Y, Zhao D et al (2020) Immobilization of mercury by iron sulfide nanoparticles alters mercury speciation and microbial methylation in contaminated groundwater. Chem Eng J 381:122664. https://doi.org/10.1016/j.cej.2019.122664

    Article  Google Scholar 

  147. Wang L, Wang M, Li Z, Gong Y (2020) Enhanced removal of trace mercury from surface water using a novel Mg2Al layered double hydroxide supported iron sulfide composite. Chem Eng J 393:124635. https://doi.org/10.1016/j.cej.2020.124635

    Article  Google Scholar 

  148. Sun Y, Liu Y, Lou Z et al (2018) Enhanced performance for Hg(II) removal using biomaterial (CMC/gelatin/starch) stabilized FeS nanoparticles: stabilization effects and removal mechanism. Chem Eng J 344:616–624. https://doi.org/10.1016/j.cej.2018.03.126

    Article  Google Scholar 

  149. Azari A, Gharibi H, Kakavandi B et al (2017) Magnetic adsorption separation process: an alternative method of mercury extracting from aqueous solution using modified chitosan coated Fe3O4 nanocomposites. J Chem Technol Biotechnol 92:188–200. https://doi.org/10.1002/jctb.4990

    Article  Google Scholar 

  150. Fang L, Li L, Qu Z et al (2018) A novel method for the sequential removal and separation of multiple heavy metals from wastewater. J Hazard Mater 342:617–624. https://doi.org/10.1016/j.jhazmat.2017.08.072

    Article  Google Scholar 

  151. Ray C, Sarkar S, Dutta S et al (2015) Evolution of tubular copper sulfide nanostructures from copper(I)-metal organic precursor: a superior platform for the removal of Hg(II) and Pb(II) ions. RSC Adv 5:12446–12453. https://doi.org/10.1039/c4ra09999k

    Article  Google Scholar 

  152. Xiong Y, Su L, Yang H et al (2015) Fabrication of copper sulfide using a Cu-based metal organic framework for the colorimetric determination and the efficient removal of Hg2+ in aqueous solutions. New J Chem 39:9221–9227. https://doi.org/10.1039/c5nj01348h

    Article  Google Scholar 

  153. Czarna D, Baran P, Kunecki P et al (2016) Synthetic zeolites as potential sorbents of mercury from wastewater occurring during wet FGD processes of flue gas. J Clean Prod 172:2636–2645. https://doi.org/10.1016/j.jclepro.2017.11.147

    Article  Google Scholar 

  154. Chen Y, Guo X, Wu F (2020) Development and evaluation of magnetic iron-carbon sorbents for mercury removal in coal combustion flue gas. J Energy Inst 93:1615–1623. https://doi.org/10.1016/j.joei.2020.01.023

    Article  Google Scholar 

  155. Lee WR, Eom Y, Lee TG (2017) Mercury recovery from mercury-containing wastes using a vacuum thermal desorption system. Waste Manag 60:546–551. https://doi.org/10.1016/j.wasman.2016.12.017

    Article  Google Scholar 

  156. Tunsu C, Wickman B (2018) Effective removal of mercury from aqueous streams via electrochemical alloy formation on platinum. Nat Commun 9:1–9. https://doi.org/10.1038/s41467-018-07300-z

    Article  Google Scholar 

  157. EcoCycle (2019) 5 Benefits of Recycling E-Waste. https://ecocycle.com.au/lighting-and-electrical/5-benefits-of-recycling-e-waste/. Accessed 12 Nov 2022

  158. DeFoe D (2013) Understanding Mercury Waste & Mercury Recycling Process. https://retrofitcompanies.com/understanding-mercury-waste-mercury-recycling-process/. Accessed 13 Dec 2022

  159. World Health Organization (2021) Mercury and human health. World Heal Organ. https://www.grida.no/resources/7778. Accessed 13 Dec 2022

  160. Fthenakis V Overview of Hazards. https://drs.illinois.edu/Page/SafetyLibrary/Mercury. Accessed 13 Dec 2022

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eylem Asmatulu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subeshan, B., Pham, A., Murad, M.S. et al. Mercury recycling technologies in its’ end-of-life management: a review. J Mater Cycles Waste Manag 25, 2559–2583 (2023). https://doi.org/10.1007/s10163-023-01720-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-023-01720-w

Keywords

Navigation