Skip to main content
Log in

Adsorption and desorption of binary mixtures of copper and mercury ions on natural and crosslinked chitosan membranes

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Copper and mercury ion adsorption on chitosan membranes was investigated in batch systems (with both single and binary solutions). The Langmuir model and its extensions (extended Langmuir, Jain-Snoeyink, and Langmuir-Freundlich models) were tested for the modeling of experimental data. Chitosan membranes presented more affinity for Hg ions than for Cu ions. The decrease of the amount of metal adsorbed on natural chitosan in binary systems (compared to single-metal solutions) showed the competition effects between the two metal ions. For glutaraldehyde-crosslinked chitosan and epichlorohydrin-crosslinked chitosan, the mixture effect was present, producing unexpected result such as higher adsorption capacities, when compared to the monocomponent solution of each metal. The desorption of the metals was also investigated, and copper and mercury ions could be selectively recovered using a combined process by using NaCl and H2SO4 as eluant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

b i :

heterogeneity parameter for each component, dimensionless

C :

concentration of the singe component at equilibrium, mmol⋅L−1

C i :

concentration of each component at equilibrium, mmol⋅L−1

E i :

root mean square error

K :

monocomponent Langmuir adsorption constant of the single component, L⋅mmol−1

K i :

individual Langmuir adsorption constant of each component, L⋅mmol−1

Q :

adsorbed amount of the single component per gram of dried chitosan membrane at equilibrium, mmol⋅g−1 dry chitosan

Q i :

adsorbed amount of each component per gram of dried chitosan membrane at equilibrium, mmol⋅g−1 dry chitosan

Q max  :

maximum adsorbed amount of the single component per gram of dried chitosan membrane at equilibrium, mmol⋅g−1 dry chitosan

Q max ,i :

maximum adsorbed amount of each component per gram of dried chitosan membrane at equilibrium, mmol⋅g−1 dry chitosan

Q mod  i :

calculated maximum amount adsorbed of each component adsorbed

n :

number of experimental data

R 2 :

adjustment coefficients from minimum square method for Langmuir model

References

  • Beppu, M.M., Santana, C.C.: PAA influence on chitosan membrane calcification. Mater. Sci. Eng. C 23, 651–658 (2003)

    Article  CAS  Google Scholar 

  • Choy, K.K.H., McKay, G.: Sorption of metal ions from aqueous solution using bone char. Environ. Int. 31, 845–854 (2005)

    Article  CAS  Google Scholar 

  • Chu, K.H.: Removal of copper from aqueous solution by chitosan in prawn shell: adsorption equilibrium and kinetics. J. Hazard. Mater. B90, 77–95 (2002)

    Article  Google Scholar 

  • Guibal, E.: Interactions of metal ions with chitosan-based sorbents: a review. Sep. Purif. Technol. 38, 43–74 (2004)

    Article  CAS  Google Scholar 

  • Hsien, T.Y., Rorrer, G.L.: Effects of acylation and crosslinking on the material properties and cadmium ion adsorption capacity of porous chitosan beads. Sep. Sci. Technol. 30, 2455–2475 (1995)

    Article  CAS  Google Scholar 

  • Jijun, G., Yongfang, C., Yan, Y., Jiang, W.: The effect of structure on pervaporation of chitosan membrane. J. Membr. Sci. 165, 75–81 (2000)

    Article  Google Scholar 

  • Juang, R.S., Shao, H.J.: A simplified equilibrium model for sorption of heavy metal ions from aqueous solutions on chitosan. Water Res. 36, 2999–3008 (2002)

    Article  CAS  Google Scholar 

  • Kawamura, Y., Yoshida, H., Asai, S., Tanibe, H.: Breakthrough curve for adsorption of mercury (II) on polyaminated highly porous chitosan beads. Water Sci. Technol. 35, 97–105 (1997)

    Article  CAS  Google Scholar 

  • Koyama, Y., Taniguchi, C.P., Huang, D.W.: Studies on chitin. X. Homogeneous cross-linking of chitosan for enhanced cupric ion adsorption. J. Appl. Polym. Sci. 31, 1951–1954 (1986)

    Article  CAS  Google Scholar 

  • Kurita, K., Sannan, T., Iwakura, Y.: Studies on chitin. VI. Binding of metal cations. J. Appl. Polym. Sci. 23, 511–515 (1979)

    Article  CAS  Google Scholar 

  • Kurita, K., Koyama, Y., Taniguchi, A.: Studies on chitin. 9. Cross-linking of water-soluble chitin and evaluation of the products as adsorbents for cupric ion. J. Appl. Polym. Sci. 31, 1169–1176 (1986)

    Article  CAS  Google Scholar 

  • Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403 (1918)

    Article  CAS  Google Scholar 

  • Lee, D.H., Moon, H.: Adsorption equilibrium of heavy metals on natural zeolites. Korean J. Chem. Eng. 18, 247–256 (2001)

    Article  CAS  Google Scholar 

  • Markhan, E.C., Benton, A.F.: The adsorption of gas mixtures by silica. J. Am. Chem. Soc. 53, 497–507 (1931)

    Article  Google Scholar 

  • Mukoma, P., Jooste, B.R., Vosloo, H.C.M.: Synthesis and characterization of cross-linked chitosan membranes for application as alternative proton exchange membrane materials in fuel cells. J. Power Sources 136, 16–23 (2004)

    Article  CAS  Google Scholar 

  • Monteiro Jr., O.A.C., Airoldi, C.: Some studies of crosslinking-glutaraldehyde interaction in a homogeneous system. Int. J. Biol. Macromol. 26, 119–128 (1999)

    Article  CAS  Google Scholar 

  • Ngah, W.S., Endud, C.S., Mayanar, R.: Removal of copper (II) ions from aqueous solution onto chitosan and cross-linked chitosan beads. React. Funct. Polym. 50, 181–190 (2002)

    Article  CAS  Google Scholar 

  • Onsoyen, E., Skaugrud, O.: Metal recovery using chitosan. J. Chem. Technol. Biotechnol. 49, 395–404 (1990)

    Article  CAS  Google Scholar 

  • Pagnanelli, F., Trifoni, M., Beolchini, F., Esposito, A., Toro, L., Veglio, F.: Equilibrium biosorption studies in single and multi-metal systems. Process Biochem. 37, 115–124 (2001)

    Article  CAS  Google Scholar 

  • Puigdomenech, I.: HYDRA: Hydrochemical Equilibrium-Constant Database Software. Royal Institute of Technology, Sweden (2004)

    Google Scholar 

  • Ruthven, D.M.: Principles of Adsorption and Adsorption Process, p. 108. Wiley-Interscience, New York (1984)

    Google Scholar 

  • Vieira, R.S., Beppu, M.M.: Mercury ion recovery using natural and crosslinked chitosan membranes. Adsorption 11, 731–736 (2005)

    Article  Google Scholar 

  • Vieira, R.S., Beppu, M.M.: Interaction of natural and crosslinked chitosan membranes with Hg(II) ions. Colloids Surf. A 279, 196–207 (2006a)

    Article  CAS  Google Scholar 

  • Vieira, R.S., Beppu, M.M.: Dynamic and static adsorption and desorption of Hg(II) ions on chitosan membranes and spheres. Water Res. 40, 1726–1734 (2006b)

    Article  CAS  Google Scholar 

  • Wei, Y.C., Hudson, S.M., Mayer, J.M., Kaplan, D.L.: The crosslinking of chitosan fibers. J. Polym. Sci. A Polym. Chem. 30, 2187–2193 (1992)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Vieira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vieira, R.S., Guibal, E., Silva, E.A. et al. Adsorption and desorption of binary mixtures of copper and mercury ions on natural and crosslinked chitosan membranes. Adsorption 13, 603–611 (2007). https://doi.org/10.1007/s10450-007-9050-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-007-9050-4

Keywords

Navigation