Sinusoidal mechanical indentation of the canal duct produced afferent responses consistent with previous reports in this species (Rabbitt et al. 1995). Figure 2 provides example simultaneous recordings of single-unit afferent discharge (A) and cupula displacement (B) in response to ∼20-μm mechanical indentation of the canal duct at 0.3 Hz. As expected, cupula displacement was in phase with mechanical indentation, and since indentation mimics head rotation (Dickman and Correia 1989), cupula displacement would be in phase with angular velocity of the head. The magnitude was ∼4 μm in this animal which corresponds to a cupular gain in the central ROI of ∼50 nm per deg/s of angular head velocity. The average cupula gain was 53 nm per deg/s (n = 9; 13 nm SE; 4 deg/s rotation ∼ 1 μm indent), consistent with the previous report by (McLaren and Hillman 1979) of ∼35 nm per deg/s. In contrast to this previous work, we found displacement of the cupula to be in phase with the mechanical stimulus and angular head velocity, at least at frequencies above the lower corner where many afferent neurons encode angular head velocity (e.g., Fig. 2B, C). For indentation stimuli 10–24 μm in amplitude, harmonic distortion of the cupula displacement was less than 15% and the first harmonic was nearly linear, with stimulus amplitude yielding Pearson’s R = 0.86. A subset of afferents exhibited a much higher degree of harmonic distortion due primarily to an excitatory–inhibitory asymmetry in afferent discharge response dynamics. Four additional example afferent responses to the 0.3-Hz stimulus are shown in the bottom panels (Fig. 2D). Angular velocity (vel.) encoding units responded with a maximum discharge rate in phase with the peak displacement of the cupula. The response gain of these units was relatively insensitive to stimulus frequency. A subset of afferent units responded with a phase advance and increased gain with frequency—a response that encodes angular acceleration (accel.) of the head. These acceleration-sensitive units are not present in all species. In the toadfish, convergence of both excitatory and inhibitory transmitters appears to underlie a mathematical differentiation of cupula displacement to arrive at acceleration-sensitive afferent discharge patterns(Holstein et al. 2004).
In order to investigate dynamics of cupula displacement, we used step indentation of the canal duct. Step indentation evoked a rapid displacement of the cupula toward the utricle followed by a slow recovery (adaptation) to its resting position. Figure 3 shows simultaneous recordings of horizontal canal afferent discharge patterns (A, D, G), and displacements of fluorescent microbeads attached to the cupula (B, E, H), in response to square wave (C, F, I) mechanical indentation of the canal duct (three example animals). During excitatory step stimuli, afferents quickly increased their discharge rate followed by a period of recovery back to their background discharge. Slowly adapting afferents encode angular velocity over a broad frequency band of sinusoidal stimuli and are analogous to the regularly discharging units in mammals (Fernández and Goldberg 1971; Goldberg and Fernandez 1971; Rabbitt et al. 2005). The most rapidly adapting afferents encode angular acceleration of the head, also over a broadband. For step stimuli, some afferents recovered following a single exponential, while others recovered following a fast adaptation, τ
f, followed by a slow adaptation, τ
s. The fast component of afferent adaptation, if present during excitatory stimuli, was absent or greatly reduced during inhibitory stimuli. This asymmetry was not obvious in the motion of the cupula (B, E, H), which deflected with nearly equal time courses for both excitatory and inhibitory stimuli for the magnitudes of stimuli investigated here. For sinusoidal stimuli above the mechanical lower corner frequency (ω > 1/τ rad/s), the cupula deflected in proportion to, and in phase with, the stimulus (Fig. 2, peak cupula displacement B aligns with stimulus C).
Adaptation of the cupula following step indentation of the duct is more clearly demonstrated in Figure 4A where multiple stimulus cycles are overlaid and fit with exponential curves (solid curves). The time constant of cupula adaptation averaged t ∼ 36 s (n = 9), but varied considerably between individual animals (13–104 s, Fig. 3C). Fluorescent microbeads within the central ROI of each animal moved together with nearly the same time constant, thus suggesting that the range of cupular time constants was primarily due to interanimal variability and not spatial distribution of beads. The present study did not investigate the deflected shape of the cupula or if differences in the time constant could be detected at different locations. All of the animals were of nearly the same size, and therefore, it seems unlikely that differences between mechanical time constants between animals could be explained by morphology alone. Although we cannot rule out variations in the diameter of the membranous duct as underlying interanimal variability, it seems likely that the mechanical properties of cupulae may differ between individual animals, with rapidly adapting cases being stiffer and/or more permeable than slowly adapting cases.
Mechanical indentation of the membranous labyrinth is known to lead to large transcupular pressures and, if the stimulus is excessive, can detach the cupula at its apex (Hillman 1974; Rabbitt et al. 1999). Although we did not intend to damage the cupula, in several cases, the cupula became detached during preparation of the animal. Detached cupulae showed a diverse range of motions depending on the extent of damage. Afferent responses, if present, reflected this diversity. In the most severe detachment cases, the cupula would swing toward the utricle, leaving a gaping opening for endolymph to flow over its apex from the canal lumen into the utricular vestibule. The cupula always remained attached to the sensory epithelium with an orientation perpendicular to the sensory epithelium and aligned with the hair bundles, thus showing a much stronger attachment at the base vs. a weak attachment at the apex. Grossly dislodged cupulae did not respond to mechanical indentation of the slender duct, at least within the limits of our experimental setup. Consistent with this, afferents in these damaged organs did not modulate in response to angular rotation of the animal or mechanical indentation of the duct. This is not surprising since the fluid pressure drop across a grossly dislodged cupula would approach zero.
In three animals, we observed reattachment of the cupula and recovery of normal afferent discharge responses to mechanical stimuli ∼7 h after the initial damage. Recovery of function occurred in cases where the cupula was dislodged at its apex but oriented properly within the ampulla. Presumably, more severely damaged cupula would take much longer to recover. In the modestly detached cases reported here, the apex of the cupula was observed to slide along the inside surface of the ampulla during mechanical indentation stimuli. The cupula did not return completely to its initial position after cessation of the stimulus. When detached, motion of the cupula at the surface of sensory epithelium was very small relative to motion at the apex, and hence, afferent modulation was reduced or absent. The displaced shape of the dislodged cupula was similar to a cantilever beam with the base firmly secured to the sensory epithelium and the apex free to swing under the ampullary apex.
Figure 5 shows cupulae displacements and afferent responses recorded from two animals with damaged cupulae. In panel B, notice that the time constant of the cupula is drastically reduced relative to normal controls (e.g., 1.4 s in this animal vs. normal in Figs. 3 and 4). Like the control condition when the canal duct was rapidly indented, an excitatory transcupular pressure was immediately generated and this compelled a rapid displacement of the cupula toward the utricle. Unlike the control condition, the pressure was quickly relieved and the cupula rapidly returned to its resting position as the endolymph flowed over the detached apex of the cupula and into the utricular vestibule. This decreased time constant can be understood by a simple model that accounts for the leakage flow over the apex (see Appendix). Consistent with the reduced time constant of the cupula, the afferents also showed reduced time constants (arrows, Fig. 5A). Afferent time constants were always less than the cupula time constant. Again, like controls, there was an excitatory–inhibitory asymmetry in afferent responses that was not present in the cupula displacement (panel A vs. B). In one animal, we captured records while the cupula was in the process of reattachment, approximately 5 h after damage (Fig. 5D–F). When deflected in the excitatory direction, the cupula in this animal deflected like controls (Fig. 5E) and afferent modulation was normal (Fig. 5D). In contrast, inhibitory stimuli momentarily detached the cupula and resulted in a very fast cupular time constant (Fig. 5E, asterisk) and corresponding rapid afferent adaptation (Fig. 5D, asterisk). These data show that the cupula was attached for excitatory stimuli but detached for inhibitory stimuli, suggesting a stick–slip behavior. After 7 h, the inhibitory detachment disappeared and responses fell within the range of control animals (e.g., Fig. 3). Reattachment of the cupula over time is further shown in Figure 6. A ∼10-μm step indentation of the canal was used as the stimulus (Fig. 6A), corresponding to approximately 40 deg/s step increase in excitatory angular velocity of the head. In the dislodged case (Fig. 6B, curve “a”), the cupula underwent rapid displacement toward the utricle just like normal controls (expanded in Fig. 6C), but unlike the control condition, the deflection quickly returned back to a resting position. The time constant of the rapid mechanical adaptation was ∼300 ms in this animal. It is significant to note that the cupula did not return entirely to its original position at the end of the stimulus (Fig. 6C). This “offset” was accompanied by sliding of the cupula along the inside surface of the ampulla, and presumably, the offset was maintained by loose adhesion of the cupula to the ampulla and is consistent with the stick–slip behavior described above. The sliding was not obvious in all detached cupulae (e.g., Fig. 5B), nor was it observed in the normal intact condition.
The two rapidly adapting records in Figure 6C were recorded from the same animal ∼1 h (red) and ∼4.5 h (blue) after damage to the cupula. Results at these two time points were virtually identical, indicating that the regeneration process had not yet reached the apex of the cupula where reattachment was necessary. After ∼7 h (Fig. 6B, curve “b”), the cupula had reattached at its apex and exhibited an adaptation time constant of ∼27 s, consistent with the time constants in control recordings. The time constant did not change at later time points (curve “c”, 10 h), but a drop in gain sometimes occurred due to loss in preload of the indentation stimulus over time (Rabbitt et al. 1995). We did not observe intermediate stages of cupula recovery, suggesting that reattachment process may be quick once the appropriate extracellular adhesion molecules are delivered to the apex.
In a singular case, we opened the cranial cavity to discover an ampulla containing two cupulae. One cupula was slightly discolored light brown, dislodged, and tilted toward the utricle, while the other cupula was pristine, transparent, and in the standard position (schematic Fig. 7A). The two cupulae interpenetrated each other at their connection to the sensory epithelium. The pristine transparent cupula was presumed to be a regenerated replacement for the dislodged cupula. There was no sign of damage to the cranial cavity or other prior injury to the animal. It was not possible at the time to record cupula motion or indent the canal, but we were able to record horizontal canal afferent modulation to sinusoidal whole body rotation in this animal. Results are shown in Bode form of gain (Fig. 7B, spk/s per deg/s) and phase (Fig. 7C, deg, re: peak angular velocity) and compared to a population of control animals reported by Boyle and Highstein (1990). Square symbols show afferent responses for the regenerated cupula (fit with thick black lines), while small symbols show three groups of control afferents in the same species. Responses in the regenerated cupula animal were phase advanced re: velocity, had lower gains, and exhibited more increase in gain with frequency than most control afferents. The gain did approach average controls as the frequency exceeded 1 Hz, but the phase remained abnormally advanced. It was confirmed by dye injection that the regenerated cupula was attached at the apex. It was further confirmed after the experiment that both cupulae were neutrally buoyant in endolymph, and therefore, the density of the cupula could be ruled out as a factor contributing to the change in afferent response dynamics. The source of the change in response dynamics is not known, but it is possible that the regeneration of the cupula was not complete and that it was leaky or more permeable to endolymph than normal. Based on the simple analysis in the Appendix, increased permeability could account for the data, but it is also possible that non-mechanical factors were at play. The implication of complete cupula regeneration raises numerous questions about how, and under what conditions, this avascular extracellular reconstruction is accomplished.