Skip to main content

Advertisement

Log in

Bacterial pore-forming proteins as anthelmintics

  • Review
  • Published:
Invertebrate Neuroscience

Abstract

Crystal (Cry) proteins are made by the Gram-positive bacterium Bacillus thuringiensis (Bt). Cry proteins are pore-forming proteins and are the most widely used biological insecticides in the world. Our laboratory found some Cry proteins are highly effective against a broad range of nematodes (roundworms). Here, we discuss our results of Cry protein activity against intestinal roundworms. Both Cry5B and Cry21A have therapeutic activities against infections of the roundworm Heligmosomoides polygyrus bakeri in mice. Cry5B also shows highly therapeutic activity against Ancylostoma ceylanicum infection in hamsters. A. ceylanicum is a minor hookworm parasite of humans, and it is closely related to the more prevalent Ancylostoma duodenale. In addition, Cry proteins show excellent combinatorial therapeutic properties with nicotinic acetylcholine receptor (nAChR) agonists, one of the two classes of compounds approved by the World Health Organization for the treatment for intestinal roundworms in humans. Given their non-toxicity to humans and their broad spectrum of nematicidal action, Cry proteins show great potential as next-generation anthelmintics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adugna S, Kebede Y, Moges F, Tiruneh M (2007) Efficacy of mebendazole and albendazole for Ascaris lumbricoides and hookworm infections in an area with long time exposure for antihelminthes, Northwest Ethiopia. Ethiop Med J 45:301–306

    PubMed  Google Scholar 

  • Albonico M, Bickle Q, Ramsan M, Montresor A, Savioli L, Taylor M (2003) Efficacy of mebendazole and levamisole alone or in combination against intestinal nematode infections after repeated targeted mebendazole treatment in Zanzibar. Bull World Health Organ 81:343–352

    PubMed  CAS  Google Scholar 

  • Barrows BD, Griffitts JS, Aroian RV (2006) Caenorhabditis elegans carbohydrates in bacterial toxin resistance. Methods Enzymol 417:340–358

    Article  PubMed  CAS  Google Scholar 

  • Barrows BD, Haslam SM, Bischof LJ, Morris HR, Dell A, Aroian RV (2007) Resistance to Bacillus thuringiensis toxin in Caenorhabditis elegans from loss of fucose. J Biol Chem 282:3302–3311

    Article  PubMed  CAS  Google Scholar 

  • Bethony J, Brooker S, Albonico M, Geiger SM, Loukas A, Diemert D, Hotez PJ (2006) Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet 367:1521–1532

    Article  PubMed  Google Scholar 

  • Bischof LJ, Kao CY, Los FC, Gonzalez MR, Shen Z, Briggs SP, van der Goot FG, Aroian RV (2008) Activation of the unfolded protein response is required for defenses against bacterial pore-forming toxin in vivo. PLoS Pathog 4:e1000176

    Article  PubMed  Google Scholar 

  • Bulla LA Jr, Bechtel DB, Kramer KJ, Shethna YI, Aronson AI, Fitz-James PC (1980) Ultrastructure, physiology, and biochemistry of Bacillus thuringiensis. Crit Rev Microbiol 8:147–204

    Article  PubMed  CAS  Google Scholar 

  • Cappello M, Bungiro RD, Harrison LM, Bischof LJ, Griffitts JS, Barrows BD, Aroian RV (2006) A purified Bacillus thuringiensis crystal protein with therapeutic activity against the hookworm parasite Ancylostoma ceylanicum. Proc Natl Acad Sci USA 103:15154–15159

    Article  PubMed  CAS  Google Scholar 

  • Chou TC (2006) Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 58:621–681

    Article  PubMed  CAS  Google Scholar 

  • Demeter LM, DeGruttola V, Lustgarten S, Bettendorf D, Fischl M, Eshleman S, Spreen W, Nguyen BY, Koval CE, Eron JJ, Hammer S, Squires K (2008) Association of efavirenz hypersusceptibility with virologic response in ACTG 368, a randomized trial of abacavir (ABC) in combination with efavirenz (EFV) and indinavir (IDV) in HIV-infected subjects with prior nucleoside analog experience. HIV Clin Trials 9:11–25

    Article  PubMed  Google Scholar 

  • Flohr C, Tuyen LN, Lewis S, Minh TT, Campbell J, Britton J, Williams H, Hien TT, Farrar J, Quinnell RJ (2007) Low efficacy of mebendazole against hookworm in Vietnam: two randomized controlled trials. Am J Trop Med Hyg 76:732–736

    PubMed  CAS  Google Scholar 

  • Fonseca-Salamanca F, Martinez-Grueiro MM, Martinez-Fernandez AR (2003) Nematocidal activity of nitazoxanide in laboratory models. Parasitol Res 91:321–324

    Article  PubMed  CAS  Google Scholar 

  • Githiori JB, Hoglund J, Waller PJ, Baker RL (2003a) The anthelmintic efficacy of the plant, Albizia anthelmintica, against the nematode parasites Haemonchus contortus of sheep and Heligmosomoides polygyrus of mice. Vet Parasitol 116:23–34

    Article  PubMed  Google Scholar 

  • Githiori JB, Hoglund J, Waller PJ, Leyden Baker R (2003b) Evaluation of anthelmintic properties of extracts from some plants used as livestock dewormers by pastoralist and smallholder farmers in Kenya against Heligmosomoides polygyrus infections in mice. Vet Parasitol 118:215–226

    Article  PubMed  Google Scholar 

  • Griffitts JS, Aroian RV (2005) Many roads to resistance: how invertebrates adapt to Bt toxins. BioEssays 27:614–624

    Article  PubMed  Google Scholar 

  • Griffitts JS, Whitacre JL, Stevens DE, Aroian RV (2001) Bt toxin resistance from loss of a putative carbohydrate-modifying enzyme. Science 293:860–864

    Article  PubMed  CAS  Google Scholar 

  • Griffitts JS, Huffman DL, Whitacre JL, Barrows BD, Marroquin LD, Muller R, Brown JR, Hennet T, Esko JD, Aroian RV (2003) Resistance to a bacterial toxin is mediated by removal of a conserved glycosylation pathway required for toxin-host interactions. J Biol Chem 278:45594–45602

    Article  PubMed  CAS  Google Scholar 

  • Griffitts JS, Haslam SM, Yang T, Garczynski SF, Mulloy B, Morris H, Cremer PS, Dell A, Adang MJ, Aroian RV (2005) Glycolipids as receptors for Bacillus thuringiensis crystal toxin. Science 307:922–925

    Article  PubMed  CAS  Google Scholar 

  • Gunawardena NK, Amarasekera ND, Pathmeswaran A, de Silva NR (2008) Effect of repeated mass chemotherapy for filariasis control on soil-transmitted helminth infections in Sri Lanka. Ceylon Med J 53:13–16

    Article  PubMed  CAS  Google Scholar 

  • Haider BA, Humayun Q, Bhutta ZA (2009) Effect of administration of antihelminthics for soil transmitted helminths during pregnancy. Cochrane Database Syst Rev. doi:10.1002/14651858.CD005547.pub2

  • Hall A, Hewitt G, Tuffrey V, de Silva N (2008) A review and meta-analysis of the impact of intestinal worms on child growth and nutrition. Matern Child Nutr 4(Suppl 1):118–236

    PubMed  Google Scholar 

  • Harhay MO, Horton J, Olliaro PL (2010) Epidemiology and control of human gastrointestinal parasites in children. Expert Rev Anti Infect Ther 8:219–234

    Article  PubMed  Google Scholar 

  • Holden-Dye L, Walker RJ (2007) Anthelmintic drugs. WormBook:1–13

  • Hotez PJ, Brooker S, Bethony JM, Bottazzi ME, Loukas A, Xiao S (2004) Hookworm infection. N Engl J Med 351:799–807

    Article  PubMed  CAS  Google Scholar 

  • Hotez PJ, Molyneux DH, Fenwick A, Kumaresan J, Sachs SE, Sachs JD, Savioli L (2007) Control of neglected tropical diseases. N Engl J Med 357:1018–1027

    Article  PubMed  CAS  Google Scholar 

  • Hu Y, Aroian RV (2012) Promise of Bacillus thuringiensis crystal proteins as Anthelmintics. In: Selzer P (ed) Drug discovery in infectious diseases, vol 4. Wiley, New York

    Google Scholar 

  • Hu Y, Georghiou SB, Kelleher AJ, Aroian RV (2010a) Bacillus thuringiensis Cry5B protein is highly efficacious as a single-dose therapy against an intestinal roundworm infection in mice. PLoS Negl Trop Dis 4:e614

    Article  PubMed  Google Scholar 

  • Hu Y, Platzer EG, Bellier A, Aroian RV (2010b) Discovery of a highly synergistic anthelmintic combination that shows mutual hypersusceptibility. Proc Natl Acad Sci USA 107:5955–5960

    Article  PubMed  CAS  Google Scholar 

  • Humphries D, Mosites E, Otchere J, Twum WA, Woo L, Jones-Sanpei H, Harrison LM, Bungiro RD, Benham-Pyle B, Bimi L, Edoh D, Bosompem K, Wilson M, Cappello M (2011) Epidemiology of hookworm infection in Kintampo North Municipality, Ghana: patterns of malaria coinfection, anemia, and albendazole treatment failure. Am J Trop Med Hyg 84:792–800

    Article  PubMed  Google Scholar 

  • Ibrahim MA, Griko N, Junker M, Bulla LA (2010) Bacillus thuringiensis: a genomics and proteomics perspective. Bioeng Bugs 1:31–50

    Article  PubMed  Google Scholar 

  • Kao CY, Los FC, Huffman DL, Wachi S, Kloft N, Husmann M, Karabrahimi V, Schwartz JL, Bellier A, Ha C, Sagong Y, Fan H, Ghosh P, Hsieh M, Hsu CS, Chen L, Aroian RV (2011) Global functional analyses of cellular responses to pore-forming toxins. PLoS Pathog 7:e1001314

    Article  PubMed  CAS  Google Scholar 

  • Katzenstein DA, Bosch RJ, Hellmann N, Wang N, Bacheler L, Albrecht MA (2003) Phenotypic susceptibility and virological outcome in nucleoside-experienced patients receiving three or four antiretroviral drugs. AIDS 17:821–830

    Article  PubMed  CAS  Google Scholar 

  • Keiser J, Utzinger J (2008) Efficacy of current drugs against soil-transmitted helminth infections: systematic review and meta-analysis. JAMA 299:1937–1948

    Article  PubMed  CAS  Google Scholar 

  • Lim YA, Romano N, Colin N, Chow SC, Smith HV (2009) Intestinal parasitic infections amongst Orang Asli (indigenous) in Malaysia: has socioeconomic development alleviated the problem? Trop Biomed 26:110–122

    PubMed  CAS  Google Scholar 

  • Marroquin LD, Elyassnia D, Griffitts JS, Feitelson JS, Aroian RV (2000) Bacillus thuringiensis (Bt) toxin susceptibility and isolation of resistance mutants in the nematode Caenorhabditis elegans. Genetics 155:1693–1699

    PubMed  CAS  Google Scholar 

  • Sanahuja G, Banakar R, Twyman RM, Capell T, Christou P (2011) Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnol J 9:283–300

    Article  PubMed  CAS  Google Scholar 

  • Smits HL (2009) Prospects for the control of neglected tropical diseases by mass drug administration. Expert Rev Anti Infect Ther 7:37–56

    Article  PubMed  CAS  Google Scholar 

  • Soberon M, Pardo L, Munoz-Garay C, Sanchez J, Gomez I, Porta H, Bravo A (2010) Pore formation by cry toxins. Adv Exp Med Biol 677:127–142

    Article  PubMed  CAS  Google Scholar 

  • Soukhathammavong PA, Sayasone S, Phongluxa K, Xayaseng V, Utzinger J, Vounatsou P, Hatz C, Akkhavong K, Keiser J, Odermatt P (2012) Low efficacy of single-dose albendazole and mebendazole against hookworm and effect on concomitant helminth infection in Lao PDR. PLoS Negl Trop Dis 6:e1417

    Article  PubMed  CAS  Google Scholar 

  • Stepek G, Buttle DJ, Duce IR, Behnke JM (2006) Human gastrointestinal nematode infections: are new control methods required? Int J Exp Pathol 87:325–341

    Article  PubMed  Google Scholar 

  • Stothard JR, Rollinson D, Imison E, Khamis IS (2009) A spot-check of the efficacies of albendazole or levamisole, against soil-transmitted helminthiases in young Ungujan children, reveals low frequencies of cure. Ann Trop Med Parasitol 103:357–360

    Article  PubMed  CAS  Google Scholar 

  • Tchuem Tchuente LA (2011) Control of soil-transmitted helminths in sub-Saharan Africa: diagnosis, drug efficacy concerns and challenges. Acta Trop 120(Suppl 1):S4–S11

    Article  PubMed  Google Scholar 

  • Wabo Pone J, Mbida M, Bilong Bilong CF (2009) In vivo evaluation of potential nematicidal properties of ethanol extract of Canthium mannii (Rubiaceae) on Heligmosomoides polygyrus parasite of rodents. Vet Parasitol 166:103–107

    Article  PubMed  CAS  Google Scholar 

  • Wei JZ, Hale K, Carta L, Platzer E, Wong C, Fang SC, Aroian RV (2003) Bacillus thuringiensis crystal proteins that target nematodes. Proc Natl Acad Sci USA 100:2760–2765

    Article  PubMed  CAS  Google Scholar 

  • Xia LQ, Zhao XM, Ding XZ, Wang FX, Sun YJ (2008) The theoretical 3D structure of Bacillus thuringiensis Cry5Ba. J Mol Model 14:843–848

    Article  PubMed  CAS  Google Scholar 

  • Xiao SH, Hui-Ming W, Tanner M, Utzinger J, Chong W (2005) Tribendimidine: a promising, safe and broad-spectrum anthelmintic agent from China. Acta Trop 94:1–14

    Article  PubMed  CAS  Google Scholar 

  • Zaccarelli M, Tozzi V, Perno CF, Antinori A (2004) The challenge of antiretroviral-drug-resistant HIV: is there any possible clinical advantage? Curr HIV Res 2:283–292

    Article  PubMed  CAS  Google Scholar 

  • Zehnder G, Gurr GM, Kuhne S, Wade MR, Wratten SD, Wyss E (2007) Arthropod pest management in organic crops. Annu Rev Entomol 52:57–80

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health grant to RVA (NIAID R01 AI056189).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Hu or Raffi V. Aroian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Y., Aroian, R.V. Bacterial pore-forming proteins as anthelmintics. Invert Neurosci 12, 37–41 (2012). https://doi.org/10.1007/s10158-012-0135-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10158-012-0135-8

Keywords

Navigation