Skip to main content
Log in

Invertebrate models of lysosomal storage disease: what have we learned so far?

  • Review
  • Published:
Invertebrate Neuroscience

Abstract

The lysosomal storage diseases (LSDs) collectively account for death in 1 in 8,000 children. Although some forms are treatable, they are essentially incurable and usually are lethal in the first decade of life. The most intractable forms of LSD are those with neuronal involvement. In an effort to identify the pathological signaling driving pathology in the LSDs, invertebrate models have been developed. In this review, we outline our current understanding of LSDs and recent findings using invertebrate models. We outline strategies and pitfalls for the development of such models. Available models of LSD in Drosophila and Caenorhabditis elegans are uncovering roles for LSD-related proteins with previously unknown function using both gain-of-function and loss-of-function strategies. These models of LSD in Drosophila and C. elegans have identified potential pathogenic signaling cascades that are proving critical to our understanding of these lethal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

LSD:

Lysosomal storage disease

BBB:

Blood/brain barrier

ERT:

Enzyme replacement therapy

MPS:

Mucopolysaccharidosis

MLS:

Mucolipidosis

GAGs:

Glycosaminoglycans

NCL:

Neuronal ceroid lipofuscinosis

References

  • Altarescu G, Sun M, Moore DF, Smith JA, Wiggs EA, Solomon BI et al (2002) The neurogenetics of mucolipidosis type IV. Neurology 59(3):306–313

    PubMed  CAS  Google Scholar 

  • Altmann SW, Davis HR Jr, Zhu LJ, Yao X, Hoos LM, Tetzloff G, Iyer SP, Maguire M, Golovko A, Zeng M, Wang L, Murgolo N, Graziano MP (2004) Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science 303:1201–1204

    Article  PubMed  CAS  Google Scholar 

  • Buff H, Smith AC, Korey CA (2007) Genetic modifiers of Drosophila palmitoyl-protein thioesterase 1-induced degeneration. Genetics 176(1):209–220

    Article  PubMed  CAS  Google Scholar 

  • Campbell EM, Fares H (2010) Roles of CUP-5, the Caenorhabditis elegans orthologue of human TRPML1, in lysosome and gut granule biogenesis. BMC Cell Biol 11:40

    Article  PubMed  Google Scholar 

  • Carstea ED, Morris JA, Coleman KG, Loftus SK, Zhang D, Cummings C, Gu J, Rosenfeld MA, Pavan WJ, Krizman DB, Nagle J, Polymeropoulos MH, Sturlet SL, Ioannou YA, Higgins ME, Comly M, Cooney A, Brown A, Kaneski CR, Blanchette-Mackie EJ, Dwyer NK, Neufeld EB, Chang TY, Liscum L, Strauss JF III, Ohno K, Zeigler M, Carmi R, Sokol J, Markie D, O’Neil RR, van Diggelen OP, Elleder M, Patterson MC, Brady RO, Vanier MT, Pentchev PG, Tagle DA (1997) Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science 277:228–231

    Article  PubMed  CAS  Google Scholar 

  • Chen CS, Bach G, Pagano RE (1998) Abnormal transport along the lysosomal pathway in mucolipidosis, type IV disease. Proc Natl Acad Sci USA 95(11):6373–6378

    Article  PubMed  CAS  Google Scholar 

  • Chitwood DJ (1999) Biochemistry and function of nematode steroids. Crit Rev Biochem Mol Biol 34:273–284

    Article  PubMed  CAS  Google Scholar 

  • Colletti GA, Kiselyov K (2011) TRPML1. Adv Exp Med Biol 704:209–219

    Article  PubMed  Google Scholar 

  • Cox T, Lachmann R, Hollak C, Aerts J, van Weely S, Hrebicek M, Platt F, Butters T, Dwek R, Moyes C, Gow I, Elstein D, Zimran A (2000) Novel oral treatment of Gaucher’s disease with N-butyldeoxynojirimycin (OGT 918) to decrease substrate biosynthesis. Lancet 355:1481–1485

    Article  PubMed  CAS  Google Scholar 

  • Davis HR Jr, Zhu LJ, Hoos LM, Tetzloff G, Maguire M, Liu J, Yao X, Iyer SP, Lam MH, Lund EG, Detmers PA, Graziano MP, Altmann SW (2004) Niemann-Pick C1 Like 1 (NPC1L1) is the intestinal phytosterol and cholesterol transporter and a key modulator of whole-body cholesterol homeostasis. J Biol Chem 279(32):33586–33592

    Article  PubMed  CAS  Google Scholar 

  • De Duve C (1959) Lysosomes, a new group of cytoplasmic particles. In: Hayashi T (ed) Subcellular particles. Ronald Press, New York, pp 128–159

    Google Scholar 

  • De Voer G, Peters D, Taschner PEM (2008) Caenorhabditis elegans as a model for lysosomal storage disorders. Biochim Biophys Acta 1782:433–446

    PubMed  Google Scholar 

  • Dennis RD, Geyer R, Egge H, Peter-Katalinic J, Li SC, Stirm S, Wiegandt H (1985) Glycosphingolipids in insects. Chemical structures of ceramide tetra-, penta-, hexa-, and heptasaccharides from Calliphora vicina pupae (Insecta: Diptera). J Biol Chem 260:5370–5375

    PubMed  CAS  Google Scholar 

  • Dermaut B, Norga KK, Kania A, Verstreken P, Pan H, Zhou Y, Callaerts P, Bellen HJ (2005) Aberrant lysosomal carbohydrate storage accompanies endocytic defects and neurodegeneration in Drosophila benchwarmer. J Cell Biol 170:127–139

    Article  PubMed  CAS  Google Scholar 

  • Derry DM, Wolfe LS (1967) Gangliosides in isolated neurons and glial cells. Science 158:1450–1452

    Article  PubMed  CAS  Google Scholar 

  • Fares H, Greenwald I (2001a) Genetic analysis of endocytosis in Caenorhabditis elegans: coelomocyte uptake defective mutants. Genetics 159(1):133–145

    PubMed  CAS  Google Scholar 

  • Fares H, Greenwald I (2001b) Regulation of endocytosis by CUP-5, the Caenorhabditis elegans mucolipin-1 homolog. Nat Genet 28(1):64–68

    PubMed  CAS  Google Scholar 

  • Fernandes Filho JA, Shapiro BE (2004) Tay-Sachs disease. Arch Neurol 61(9):1466–1468

    Article  PubMed  Google Scholar 

  • Fischbach KF, Dittrich APM (1989) The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure. Cell Tissue Res 258:441–475

    Article  Google Scholar 

  • Fluegel ML, Parker TJ, Pallanck LJ (2006) Mutations of a Drosophila NPC1 gene confer sterol and ecdysone metabolic defects. Genetics 172(1):185–196

    Article  PubMed  CAS  Google Scholar 

  • Fu R et al (2010) Oxidative stress in Niemann-Pick disease, type C. Mol Genet Metab 101:214–218

    Article  PubMed  CAS  Google Scholar 

  • Fürst W, Machleidt W, Sandhoff K (1988) The precursor of sulfatide activator protein is processed to three different proteins. Biol Chem Hoppe Seyler 369:317–328

    Article  PubMed  Google Scholar 

  • Garver WS, Heidenreich RA, Erickson RP, Thomas MA, Wilson JM (2000) Localization of the murine Niemann-Pick C1 protein to two distinct intracellular compartments. J Lipid Res 41:673–687

    PubMed  CAS  Google Scholar 

  • Gerdt S, Lochnit G, Dennis RD, Geyer R (1997) Isolation and structural analysis of three neutral glycosphingolipids from a mixed population of Caenorhabditis elegans (Nematoda:Rhabditida). Glycobiology 7(2):265–275

    Article  PubMed  CAS  Google Scholar 

  • Ginzburg L, Kacher Y, Futerman AH (2004) The pathogenesis of glycosphingolipid storage disorders. Semin Cell Dev Biol 15:417–431

    Article  PubMed  CAS  Google Scholar 

  • Griffin LD, Gong W, Verot L, Mellon SH (2004) Niemann-Pick type C disease involves disrupted neurosteroidogenesis and responds to allopregnanolone. Nat Med 10(7):704–711

    Article  PubMed  CAS  Google Scholar 

  • Gutternigg M, Kretschmer-Lubich D, Paschinger K, Rendic D, Hader J, Geier P et al (2007) Biosynthesis of truncated N-linked oligosaccharides results from non-orthologous hexosaminidase-mediated mechanisms in nematodes, plants, and insects. J Biol Chem 282(38):27825–27840

    Article  PubMed  CAS  Google Scholar 

  • Hardie RC, Minke B (1992) The trp gene is essential for a light-activated Ca2+ channel in Drosophila photoreceptors. Neuron 8(4):643–651

    Article  PubMed  CAS  Google Scholar 

  • Harzer K, Paton BC, Poulos A, Kustermann-Kuhn B, Roggendorf W, Grisar T, Popp M (1989) Sphingolipid activator protein deficiency in a 16-week-old atypical gaucher disease patient and his fetal sibling: biochemical signs of combined sphingolipidoses. Eur J Pediatr 149:31–39

    Article  PubMed  CAS  Google Scholar 

  • Hebbar S, Mahadev S, Schwudke D (2010) Ceramide accumulation signals global changes in lipid metabolism and loss of nervous system integrity in a fly model of neurodegeneration. J Neurogenet 24(Suppl 1):1–95

    Google Scholar 

  • Hers HG (1963) α-glucosidase deficiency in generalized glycogen-storage disease (Pompe’s disease). Biochem J 86:11–16

    PubMed  CAS  Google Scholar 

  • Hersh BM, Hartwieg E, Horvitz HR (2002) The Caenorhabditis elegans mucolipin-like gene cup-5 is essential for viability and regulates lysosomes in multiple cell types. Proc Natl Acad Sci USA 99(7):4355–4360

    Article  PubMed  CAS  Google Scholar 

  • Hickey AJ, Chotkowski HL, Singh N, Ault JG, Korey CA, MacDonald ME, Glaser RL (2006) Palmitoyl-protein thioesterase 1 deficiency in Drosophila melanogaster causes accumulation of abnormal storage material and reduced life span. Genetics 172:2379–2390

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Suyama K, Buchanan J, Zhu AJ, Scott MP (2005) A Drosophila model of the Niemann-Pick type C lysosome storage disease: dnpc1a is required for molting and sterol homeostasis. Development 132:5115–5124

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Warren JT, Buchanan J, Gilbert LI, Scott MP (2007) Drosophila Niemann-Pick type C-2 genes control sterol homeostasis and steroid biosynthesis: a model of human neurodegenerative disease. Development 134:3733–3742

    Article  PubMed  CAS  Google Scholar 

  • Jardim LB, Villanueva MM, de Souza CF, Netto CB (2010) Clinical aspects of neuropathic lysosomal storage disorders. J Inherit Metab Dis 33:315–329

    Article  PubMed  Google Scholar 

  • Jeyakumar M, Dwek RA, Butters TD, Platt FM (2005) Storage solutions: treating lysosomal disorders of the brain. Nat Rev Neurosci 6:713–725

    PubMed  Google Scholar 

  • Karsten SL, Sang TK, Gehman LT, Chatterjee S, Liu J, Lawless GM, Sengupta S, Berry RW, Pomakian J, Oh HS, Schulz C, Hui KS, Wiedau-Pazos M, Vinters HV, Binder LI, Geschwind DH, Jackson GR (2006) A genomic screen for modifiers of tauopathy identifies puromycin-sensitive aminopeptidase as an inhibitor of tau-induced neurodegeneration. Neuron 51:549–560

    Article  PubMed  CAS  Google Scholar 

  • Kawahara A, Nishi T, Hisano Y, Fukui H, Yamaguchi A, Mochizuki N (2009) The sphingolipid transporter spns2 functions in migration of zebrafish myocardial precursors. Science 323:524–527

    Article  PubMed  CAS  Google Scholar 

  • Kohlschütter A, Schulz A (2009) Towards understanding the neuronal ceroid lipofuscinoses. Brain Dev-JPN 31:499–502

    Article  Google Scholar 

  • Kolter T, Sandhoff K (1998) Glycosphingolipid degradation and animal models of GM2-gangliosidoses. J Inherit Metab Dis 21:548–563

    Article  PubMed  CAS  Google Scholar 

  • Korey CA, MacDonald ME (2003) An over-expression system for characterizing Ppt1 function in Drosophila. BMC Neurosci 4:30

    Article  PubMed  Google Scholar 

  • Krabbe K (1916) A new familial, infantile form of diffuse brain sclerosis. Brain 39:74–114

    Article  Google Scholar 

  • Kuronen M, Talvitie M, Lehesjoki AE, Myllykangas L (2009) Genetic modifiers of degeneration in the cathepsin D deficient Drosophila model for neuronal ceroid lipofuscinosis. Neurobiol Dis 36(3):488–493

    Article  PubMed  CAS  Google Scholar 

  • LaPlante JM, Falardeau JL, Brown EM, Slaugenhaupt SA, Vassilev PM (2011) The cation channel mucolipin-1 is a bifunctional protein that facilitates membrane remodeling via its serine lipase domain. Exp Cell Res 317:691–705

    Article  PubMed  CAS  Google Scholar 

  • Leonard R, Rendic D, Rabouille C, Wilson IB, Preat T, Altmann F (2006) The Drosophila fused lobes gene encodes an N-acetylglucosaminidase involved in N-glycan processing. J Biol Chem 281(8):4867–4875

    Article  PubMed  CAS  Google Scholar 

  • Li J, Brown G, Ailion M, Lee S, Thomas JH (2004) NCR-1 and NCR-2, the C. elegans homologs of the human Niemann-Pick type C1 disease protein, function upstream of DAF-9 in the dauer formation pathways. Development 131:5741–5752

    Article  PubMed  CAS  Google Scholar 

  • Liscum L (2000) Niemann-Pick type C mutations cause lipid traffic jam. Traffic 1:218–225

    Article  PubMed  CAS  Google Scholar 

  • Loftus SK, Morris JA, Carstea ED, Gu JZ, Cummings C, Brown A, Ellison J, Ohno K, Rosenfeld MA, Tagle DA, Pentchev PG, Tavan WJ (1997) Murine model of Niemann-Pick C disease: mutation in a cholesterol homeostasis gene. Science 277:232–235

    Article  PubMed  CAS  Google Scholar 

  • Mahuran DJ, Gravel RA (2001) The beta-hexosaminidase story in Toronto: from enzyme structure to gene mutation. Adv Genet 44:145–163

    Article  PubMed  CAS  Google Scholar 

  • March PA, Wurzelmann S, Walkley SU (1995) Morphological alterations in neocortical and cerebellar GABAergic neurons in a canine model of juvenile Batten disease. Am J Med Genet 57:204–212

    Article  PubMed  CAS  Google Scholar 

  • Meikle PJ, Hopwood JJ, Clague AE, Carey WF (1999) Prevalence of lysosomal storage disorders. JAMA 281:249–254

    Article  PubMed  CAS  Google Scholar 

  • Milton VJ, Jarrett HE, Gowers K, Chalak S, Briggs L, Robinson IM, Sweeney ST (2011) Oxidative stress induces overgrowth of the Drosophila neuromuscular junction. Proc Natl Acad Sci USA. doi:10.1073/pnas.1014511108

  • Mistry P, Germain DP (2006) Phenotype variations in gaucher disease. Rev Med Interne 27(Suppl 1):S3–S10

    Article  PubMed  Google Scholar 

  • Montell C, Rubin GM (1989) Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron 2(4):1313–1323

    Article  PubMed  CAS  Google Scholar 

  • Myllykangas L, Tyynela J, Page-McCaw A, Rubin GM, Haltia MJ, Feany MB (2005) Cathepsin D-deficient Drosophila recapitulate the key features of neuronal ceroid lipofuscinoses. Neurobiol Dis 19:194–199

    Article  PubMed  CAS  Google Scholar 

  • Nakano T, Sandhoff K, Stumper J, Christomanou H, Suzuki K (1989) Structure of full-length cDNA coding for sulfatide activator, a Co-beta-glucosidase and two other homologous proteins: two alternate forms of the sulfatide activator. J Biochem 105:152–154

    PubMed  CAS  Google Scholar 

  • Nakano Y, Fujitani K, Kurihara J, Ragan J, Usui-Aoki K, Shimoda L, Lukacsovich T, Suzuki K, Sezaki M, Sano Y, Ueda R, Awano W, Kaneda M, Umeda M, Yamamoto D (2001) Mutations in the novel membrane protein spinster interfere with programmed cell death and cause neural degeneration in Drosophila melanogaster. Mol Cell Biol 21:3775–3788

    Article  PubMed  CAS  Google Scholar 

  • Naureckiene S, Sleat DE, Lackland H, Fensom A, Vanier MT, Wattiaux R, Jadot M, Lobel P (2000) Identification of HE1 as the second gene of Niemann-Pick C disease. Science 290:2298–2301

    Article  PubMed  CAS  Google Scholar 

  • Nieweg K, Schaller H, Pfrieger FW (2009) Marked differences in cholesterol synthesis between neurons and glial cells from postnatal rats. J Neurochem 109:125–134

    Article  PubMed  CAS  Google Scholar 

  • O’Brien JS, Kretz KA, Dewji N, Wenger DA, Esch F, Fluharty AL (1988) Coding of two sphingolipid activator proteins (SAP-1 and SAP-2) by same genetic locus. Science 241:1098–1101

    Article  PubMed  Google Scholar 

  • Osborne N, Brand-Arzamendi K, Ober EA, Jin SW, Verkade H, Holtzman NG, Yelon D, Stainier DY (2008) The spinster homolog, two of hearts, is required for sphingosine 1-phosphate signaling in zebrafish. Curr Biol 18:1882–1888

    Article  PubMed  CAS  Google Scholar 

  • Pandey UB, Nie Z, Batlevi Y, McCray BA, Ritson GP, Nedelsky NB, Schwartz SL, DiProspero NA, Knight MA, Schuldiner O, Padmanabhan R, Hild M, Berry DL, Garza D, Hubbert CC, Yao TP, Baehrecke EH, Taylor JP (2007) HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447:859–863

    Article  PubMed  CAS  Google Scholar 

  • Pearce DA (2004) Simple non-mammalian systems. In: Platt FM, Walkley SU (eds) Lysosomal disorders of the brain. Oxford University Press, Oxford, pp 231–256

    Google Scholar 

  • Phillips SE, Woodruff EA III, Liang P, Patten M, Broadie K (2008) Neuronal loss of Drosophila NPC1a causes cholesterol aggregation and age-progressive neurodegeneration. J Neurosci 28:6569–6582

    Article  PubMed  CAS  Google Scholar 

  • Porter MY, Turmaine M, Mole SE (2005) Identification and characterization of Caenorhabditis elegans palmitoyl protein thioesterase1. J Neurosci Res 79(6):836–848

    Article  PubMed  CAS  Google Scholar 

  • Rakheja D, Narayan SB, Bennett MJ (2007) Juvenile neuronal ceroid-lipofuscinosis (Batten disease): a brief review and update. Curr Mol Med 7:603–608

    Article  PubMed  CAS  Google Scholar 

  • Rong Y, McPhee CK, Deng S, Huang L, Chen L, Liu M, Tracy K, Baehrecke EH, Yu L, Lenardo MJ (2011) Spinster is required for autophagic lysosome reformation and mTOR reactivation following starvation. Proc Natl Acad Sci USA 108(19):7826–7831

    Article  PubMed  CAS  Google Scholar 

  • Rucker JC, Shapiro BE, Han YH, Kumar AN, Garbutt S, Keller EL et al (2004) Neuro-ophthalmology of late-onset Tay-Sachs disease (LOTS). Neurology 63(10):1918–1926

    PubMed  CAS  Google Scholar 

  • Sachs B (1887) On arrested cerebral development, with special reference to its cortical pathology. J Nerv Ment Dis 14:541–553

    Google Scholar 

  • Sakurai A, Nakano Y, Koganezawa M, Yamamoto D (2010) Phenotypic interactions of spinster with the genes encoding proteins for cell death control in Drosophila melanogaster. Arch Insect Biochem Physiol 73(3):119–127

    Article  PubMed  CAS  Google Scholar 

  • Schaheen L, Patton G, Fares H (2006) Suppression of the cup-5 mucolipidosis type IV-related lysosomal dysfunction by the inactivation of an ABC transporter in C. elegans. Development 133(19):3939–3948

    Article  PubMed  CAS  Google Scholar 

  • Scott C, Higgins ME, Davies JP, Ioannou YA (2004) Targeting of NPC1 to late endosomes involves multiple signals, including one residing within the putative sterol-sensing domain. J Biol Chem 279:48214–48223

    Article  PubMed  CAS  Google Scholar 

  • Seppo A, Moreland M, Schweingruber H, Tiemeyer M (2000) Zwitterionic and acidic glycosphingolipids of the Drosophila melanogaster embryo. Eur J Biochem/FEBS 267(12):3549–3558

    Article  CAS  Google Scholar 

  • Settembre C, Fraldi A, Rubinsztein DC, Ballabio A (2008a) Lysosomal storage diseases as disorders of autophagy. Autophagy 4:113–114

    PubMed  Google Scholar 

  • Settembre C et al (2008b) A block of autophagy in lysosomal storage disorders. Hum Mol Genet 17:119–129

    Article  PubMed  CAS  Google Scholar 

  • Spiegel R, Bach G, Sury V, Mengistu G, Meidan B, Shalev S, Shneor Y, Mandel H, Zeigler M (2005) A mutation in the saposin A coding region of the prosaposin gene in an infant presenting as Krabbe disease: first report of saposin A deficiency in humans. Mol Genet Metab 84:160–166

    Article  PubMed  CAS  Google Scholar 

  • Sun M, Goldin E, Stahl S, Falardeau JL, Kennedy JC, Acierno JS Jr et al (2000) Mucolipidosis type IV is caused by mutations in a gene encoding a novel transient receptor potential channel. Hum Mol Genet 9(17):2471–2478

    Article  PubMed  CAS  Google Scholar 

  • Sweeney ST (2008) Modelling lysosomal storage disease in Drosophila. SEB Exp Biol Ser 60:115–139

    PubMed  CAS  Google Scholar 

  • Sweeney ST, Davis GW (2002) Unrestricted synaptic growth in spinster-a late endosomal protein implicated in TGF-beta-mediated synaptic growth regulation. Neuron 36:403–416

    Article  PubMed  CAS  Google Scholar 

  • Sym M, Basson M, Johnson C (2000) A model for Niemann-Pick type C disease in the nematode Caenorhabditis elegans. Curr Biol 10:527–530

    Article  PubMed  CAS  Google Scholar 

  • Tain LS, Mortiboys H, Tao RN, Ziviani E, Bandmann O, Whitworth AJ (2009) Rapamycin activation of 4E-BP prevents parkinsonian dopaminergic neuron loss. Nat Neurosci 12:1129–1135

    Article  PubMed  CAS  Google Scholar 

  • Tay W (1881) Symmetrical changes in the region of the yellow spot in each eye of an infant. Trans Ophthalmol Soc 1:55–57

    Google Scholar 

  • Treusch S, Knuth S, Slaugenhaupt SA, Goldin E, Grant BD, Fares H (2004) Caenorhabditis elegans functional orthologue of human protein h-mucolipin-1 is required for lysosome biogenesis. Proc Natl Acad Sci USA 101(13):4483–4488

    Article  PubMed  CAS  Google Scholar 

  • Triggs-Raine B, Mahuran DJ, Gravel RA (2001) Naturally occurring mutations in GM2 gangliosidosis: a compendium. Adv Genet 44:199–224

    Article  PubMed  CAS  Google Scholar 

  • Tuxworth RI, Vivancos V, O’Hare MB, Tear G (2009) Interactions between the juvenile Batten disease gene, CLN3, and the Notch and JNK signalling pathways. Hum Mol Genet 18:667–678

    Article  PubMed  CAS  Google Scholar 

  • Tuxworth RI, Chen H, Vivancos V, Carvajal N, Huang X, Tear G (2011) The Batten disease gene CLN3 is required for the response to oxidative stress. Hum Mol Genet 20(10):2037–2047

    Article  PubMed  CAS  Google Scholar 

  • Tylki-Szymańska A, Czartoryska B, Vanier MT, Poorthuis BJ, Groener JA, Lugowska A, Millat G, Vaccaro AM, Jurkiewicz E (2007) Non-neuronopathic gaucher disease due to saposin C deficiency. Clin Genet 72:538–542

    Article  PubMed  Google Scholar 

  • van Meer G (1998) Lipids of the Golgi membrane. Trends Cell Biol 8:29–33

    Article  PubMed  Google Scholar 

  • Vance JE (2006) Lipid imbalance in the neurological disorder, Niemann-Pick C disease. FEBS Lett 580:5518–5524

    Article  PubMed  CAS  Google Scholar 

  • Venkatachalam K, Long AA, Elsaesser R, Nikolaeva D, Broadie K, Montell C (2008) Motor deficit in a Drosophila model of mucolipidosis type IV due to defective clearance of apoptotic cells. Cell 135:838–851

    Article  PubMed  CAS  Google Scholar 

  • Vitner EB, Platt FM, Futerman AH (2010) Common and uncommon pathogenic cascades in lysosomal storage diseases. J Biol Chem 285:20423–20427

    Article  PubMed  CAS  Google Scholar 

  • Voght SP, Fluegel ML, Andrews LA, Pallanck LJ (2007) Drosophila NPC1b promotes an early step in sterol absorption from the midgut epithelium. Cell Metab 5(3):195–205

    Article  PubMed  CAS  Google Scholar 

  • Walkley SU, Wurzelmann S, Rattazzi MC, Baker HJ (1990) Distribution of ectopic neurite growth and other geometrical distortions of CNS neurons in feline GM2 gangliosidosis. Brain Res 510:63–73

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Shaw WR, Tsang HT, Reid E, O’Kane CJ (2007) Drosophila spichthyin inhibits BMP signaling and regulates synaptic growth and axonal microtubules. Nat Neurosci 10:177–185

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Ma Z, Scott MP, Huang X (2011) The cholesterol trafficking protein NPC1 is required for Drosophila spermatogenesis. Dev Biol 351:146–155

    Article  PubMed  CAS  Google Scholar 

  • Wei H, Kim SJ, Zhang Z, Tsai PC, Wisniewski KE, Mukherjee AB (2008) ER and oxidative stresses are common mediators of apoptosis in both neurodegenerative and non-neurodegenerative lysosomal storage disorders and are alleviated by chemical chaperones. Hum Mol Genet 17:469–477

    Article  PubMed  CAS  Google Scholar 

  • Wenger DA, Suzuki K, Suzuki Y, Suzuki K (2001) Galactosylceramide lipidosis: globoid cell leukodystrophy (Krabbe disease). In: Scriver CR, Beaudet AL, Sly WS et al (eds) The metabolic and molecular basis of inherited disease, 8th edn. McGraw-Hill, New York, pp 3669–3694

    Google Scholar 

  • Wraith JE (2001) Lysosomal disorders. Semin Neonatol 7:75–83

    Article  Google Scholar 

  • Yuva-Aydemir Y, Bauke AC, Klambt C (2011) Spinster controls Dpp signaling during glial migration in the Drosophila eye. J Neurosci 31:7005–7015

    Article  PubMed  CAS  Google Scholar 

  • Zervas M, Sommers KL, Thrall MA, Walkley SU (2001) Critical role for glycosphingolipids in Niemann-Pick disease type C. Curr Biol 11:1283–1287

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Sangeeta Chawla for comments on the manuscript. We thank the BBSRC (for a Quota studentship to S. Hindle, grant BB/I012273/1 to STS) and MRC (grant G0400580 to STS,) for funding. Sarita Hebbar is supported by a Wellcome Trust-DBT India Alliance Senior Fellowship awarded to Dominik Schwudke, NCBS, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean T. Sweeney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hindle, S., Hebbar, S. & Sweeney, S.T. Invertebrate models of lysosomal storage disease: what have we learned so far?. Invert Neurosci 11, 59–71 (2011). https://doi.org/10.1007/s10158-011-0125-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10158-011-0125-2

Keywords

Navigation