Skip to main content

Nonmammalian Models of Huntington’s Disease

  • Protocol
  • First Online:
Huntington’s Disease

Abstract

Flies, worms, yeast and more recently zebra fish have all been engineered to express expanded polyglutamine repeat versions of Huntingtin with various resulting pathologies including early death, neurodegeneration, and loss of motor function. Each of these models present particular features that make it useful in studying the mechanisms of polyglutamine pathology. However, one particular unbiased readout of mHTT pathology is functional loss of motor control. Loss of motor control is prominent in patients, but it remains unresolved whether pathogenic symptoms in patients result from overt degeneration and loss of neurons or from malfunctioning of surviving neurons as the pathogenic insult builds up. This is why a functional assay such as motor control can be uniquely powerful in revealing early as well as late neurological deficits and does not rely on assumptions such as that the level of inclusions or the degree of neuronal loss can be equated with the level of pathology. Drosophila is well suited for such assays because it contains a functioning nervous system with many parallels to the human condition. In addition, the ability to readily express mHTT transgenes in different tissues and subsets of neurons allows one the possibility of isolating a particular effect to a subset of neurons where one can correlate subcellular events in response to mHTT challenge with pathology at both the cellular and organismal levels. Here we describe methods to monitor the degree of motor function disruption in Drosophila models of HD and we include a brief summary of other nonmammalian models of HD and discussion of their unique strengths.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Orr HT, Zoghbi HY (2007) Trinucleotide repeat disorders. Annu Rev Neurosci 30:575–621

    Article  PubMed  CAS  Google Scholar 

  2. Steffan JS (2010) Does Huntingtin play a role in selective macroautophagy? Cell Cycle 9:3401–3413

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Ochaba J, Lukacsovich T, Csiko G et al (2014) Potential function for the Huntingtin protein as a scaffold for selective autophagy. Proc Natl Acad Sci U S A 111:16889–16894

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Rui YN, Xu Z, Patel B et al (2015) Huntingtin functions as a scaffold for selective macroautophagy. Nat Cell Biol 17:262–275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983

    Article  Google Scholar 

  6. Marsh JL, Thompson LM (2004) Can flies help humans treat neurodegenerative diseases? Bioessays 26:485–496

    Article  PubMed  CAS  Google Scholar 

  7. Mangiarini L, Sathasivam K, Selle M et al (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87:493–506

    Article  PubMed  CAS  Google Scholar 

  8. Tabrizi SJ, Workman J, Har PE et al (2000) Mitochondrial dysfunction and free radical damage in the Huntington R6/2 transgenic mouse. Ann Neurol 47:80–86

    Article  PubMed  CAS  Google Scholar 

  9. Lin CH, Tallaksen-Greene S, Chien WM et al (2001) Neurological abnormalities in a knock-in mouse model of Huntington’s disease. Hum Mol Genet 10:137–144

    Article  PubMed  CAS  Google Scholar 

  10. Solans A, Zambrano A, Rodrigue M, Barrientos A (2006) Cytotoxicity of a mutant huntingtin fragment in yeast involves early alterations in mitochondrial OXPHOS complexes II and III. Hum Mol Genet 15:3063–3081

    Article  PubMed  CAS  Google Scholar 

  11. Wang H, Lim PJ, Karbowski M, Monteiro MJ (2009) Effects of overexpression of huntingtin proteins on mitochondrial integrity. Hum Mol Genet 18:737–752

    Article  PubMed  CAS  Google Scholar 

  12. Kim J, Moody JP, Edgerly CK et al (2010) Mitochondrial loss, dysfunction and altered dynamics in Huntington’s disease. Hum Mol Genet 19:3919–3935

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Besson MT, Dupont P, Fridell YW, Lievens JC (2010) Increased energy metabolism rescues glia-induced pathology in a Drosophila model of Huntington’s disease. Hum Mol Genet 19:3372–3382

    Article  PubMed  CAS  Google Scholar 

  14. Gunawardena S, Her LS, Brusch RG et al (2003) Disruption of axonal transport by loss of huntingtin or expression of pathogenic polyQ proteins in Drosophila. Neuron 40:25–40

    Article  PubMed  CAS  Google Scholar 

  15. Khalil B, El Fissi N, Aouane A et al (2015) PINK1-induced mitophagy promotes neuroprotection in Huntington’s disease. Cell Death Dis 6:e1617

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Fernandez-Funez P, Nino-Rosales ML, de Gouyon B et al (2000) Identification of genes that modify ataxin-1-induced neurodegeneration. Nature 408:101–106

    Article  PubMed  CAS  Google Scholar 

  17. Steffan JS, Bodai L, Pallos J et al (2001) Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 413:739–743

    Article  PubMed  CAS  Google Scholar 

  18. Labbadia J, Morimoto RI (2013) Huntington’s disease: underlying molecular mechanisms and emerging concepts. Trends Biochem Sci 38:378–385

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Bates EA, Victor M, Jones AK et al (2006) Differential contributions of Caenorhabditis elegans 35 histone deacetylases to huntingtin polyglutamine toxicity. J Neurosci 26:2830–2838

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Howitz KT, Bitterman KJ, Cohen HY et al (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425:191–196

    Article  PubMed  CAS  Google Scholar 

  21. Parker JA, Arango M, Abderrahmane S et al (2005) Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nat Genet 37:349–350

    Article  PubMed  CAS  Google Scholar 

  22. Pallos J, Bodai L, Lukacsovich T et al (2008) Inhibition of specific HDACs and sirtuins suppresses pathogenesis in a Drosophila model of Huntington’s disease. Hum Mol Genet 17:3767–3775

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Ledford H (2010) Ageing: much ado about ageing. Nature 464:480–481

    Article  PubMed  CAS  Google Scholar 

  24. Li JL, Hayden MR, Almqvist EW et al (2003) A genome scan for modifiers of age at onset in Huntington disease: the HD MAPS study. Am J Hum Genet 73:682–687

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Keum JW, Shin A, Gillis T et al (2016) The HTT CAG-expansion mutation determines age at death but not disease duration in Huntington disease. Am J Hum Genet 98:287–298

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Skillings EA, Wood NI, Morton AJ (2014) Beneficial effects of environmental enrichment and food entrainment in the R6/2 mouse model of Huntington’s disease. Brain Behav 4:675–686

    Article  PubMed  PubMed Central  Google Scholar 

  27. Spires TL, Grote HE, Varshney NK, Cordery PM et al (2004) Environmental enrichment rescues protein deficits in a mouse model of Huntington’s disease, indicating a possible disease mechanism. J Neurosci 24:2270–2276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Branco J, Al-Ramahi I, Ukani L et al (2008) Comparative analysis of genetic modifiers in Drosophila points to common and distinct mechanisms of pathogenesis among polyglutamine diseases. Hum Mol Genet 17:376–390

    Article  PubMed  CAS  Google Scholar 

  29. Kaltenbach LS, Romero E, Becklin RR et al (2007) Huntingtin interacting proteins are genetic modifiers of neurodegeneration. PLoS Genet 3:e82

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Smith MR, Syed A, Lukacsovich T et al (2014) A potent and selective Sirtuin 1 inhibitor alleviates pathology in multiple animal and cell models of Huntington’s disease. Hum Mol Genet 23:2995–3007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Hockly E, Richon VM, Woodman B et al (2003) Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington’s disease. Proc Natl Acad Sci U S A 100:2041–2046

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Nishimura Y, Yalgin C, Akimoto S et al (2010) Selection of behaviors and segmental coordination during larval locomotion is disrupted by nuclear polyglutamine inclusions in a new Drosophila Huntington’s disease-like model. J Neurogenet 24:194–206

    Article  PubMed  CAS  Google Scholar 

  33. Peterson RT, Nass R, Boyd WA et al (2008) Use of non-mammalian alternative models for neurotoxicological study. Neurotoxicology 29:546–555

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Pouladi MA, Morton AJ, Hayden MR (2013) Choosing an animal model for the study of Huntington’s disease. Nat Rev Neurosci 14:708–721

    Article  PubMed  CAS  Google Scholar 

  35. Beam M, Silva MC, Morimoto RI (2012) Dynamic imaging by fluorescence correlation spectroscopy identifies diverse populations of polyglutamine oligomers formed in vivo. J Biol Chem 287:26136–26145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Brignull HR, Morley JF, Morimoto RI (2007) The stress of misfolded proteins: C. elegans models for neurodegenerative disease and aging. Adv Exp Med Biol 594:167–189

    Article  PubMed  Google Scholar 

  37. Gidalevitz T, Wang N, Deravaj T et al (2013) Natural genetic variation determines susceptibility to aggregation or toxicity in a C. elegans model for polyglutamine disease. BMC Biol 11:100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Barbaro BA, Lukacsovich T, Agrawal N et al (2015) Comparative study of naturally occurring huntingtin fragments in Drosophila points to exon 1 as the most pathogenic species in Huntington’s disease. Hum Mol Genet 24:913–925

    Article  PubMed  CAS  Google Scholar 

  39. Khurana V, Lindquist S (2010) Modelling neurodegeneration in Saccharomyces cerevisiae: why cook with baker’s yeast? Nat Rev Neurosci 11:436–449

    Article  PubMed  CAS  Google Scholar 

  40. Mason RP, Giorgini F (2011) Modeling Huntington disease in yeast: perspectives and future directions. Prion 5:269–276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Pereira C, Bessa C, Soare J et al (2012) Contribution of yeast models to neurodegeneration research. J Biomed Biotechnol 2012:941232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Miller-Fleming L, Giorgini F, Outeiro TF (2008) Yeast as a model for studying human neurodegenerative disorders. Biotechnol J 3:325–338

    Article  PubMed  CAS  Google Scholar 

  43. Oliveira AV, Vilaca R, Santos CN et al (2017) Exploring the power of yeast to model aging and age-related neurodegenerative disorders. Biogerontology 18:3–34

    Article  PubMed  CAS  Google Scholar 

  44. Duennwald ML, Lindquist S (2008) Impaired ERAD and ER stress are early and specific events in polyglutamine toxicity. Genes Dev 22:3308–3319

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Meriin AB, Zhang X, Miliaras NB et al (2003) Aggregation of expanded polyglutamine domain in yeast leads to defects in endocytosis. Mol Cell Biol 23:7554–7565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Sokolov S, Pozniakovsky A, Bocharova N et al (2006) Expression of an expanded polyglutamine domain in yeast causes death with apoptotic markers. Biochim Biophys Acta 1757:660–666

    Article  PubMed  CAS  Google Scholar 

  47. Chopra V, Fox JH, Lieberman G et al (2007) A small-molecule therapeutic lead for Huntington’s disease: preclinical pharmacology and efficacy of C2-8 in the R6/2 transgenic mouse. Proc Natl Acad Sci U S A 104:16685–16689

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ocampo A, Zambrano A, Barrientos A (2010) Suppression of polyglutamine-induced cytotoxicity in Saccharomyces cerevisiae by enhancement of mitochondrial biogenesis. FASEB J 24:1431–1441

    Article  PubMed  CAS  Google Scholar 

  49. Zwilling D, Huang SY, Sathyasaikumar KV et al (2011) Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration. Cell 145:863–874

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Giorgini F, Guidetti P, Nguyen Q et al (2005) A genomic screen in yeast implicates kynurenine 3-monooxygenase as a therapeutic target for Huntington disease. Nat Genet 37:526–531

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Zhang X, Smith DL, Meriin AB et al (2005) A potent small molecule inhibits polyglutamine aggregation in Huntington’s disease neurons and suppresses neurodegeneration in vivo. Proc Natl Acad Sci U S A 102:892–897

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Ehrnhoefer DE, Duennwald M, Markovic P et al (2006) Green tea (−)-epigallocatechin-gallate modulates early events in huntingtin misfolding and reduces toxicity in Huntington’s disease models. Hum Mol Genet 15:2743–2751

    Article  PubMed  CAS  Google Scholar 

  53. Kaletta T, Hengartner MO (2006) Finding function in novel targets: C. elegans as a model organism. Nat Rev Drug Discov 5:387–398

    Article  PubMed  CAS  Google Scholar 

  54. Wolozin B, Gabel C, Ferree A et al (2011) Watching worms whither: modeling neurodegeneration in C. elegans. Prog Mol Biol Transl Sci 100:499–514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Chen X, Barclay JW, Burgoyne RD, Morgan A (2015) Using C. elegans to discover therapeutic compounds for ageing-associated neurodegenerative diseases. Chem Cent J 9:65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    PubMed  PubMed Central  CAS  Google Scholar 

  57. Teschendorf D, Link CD (2009) What have worm models told us about the mechanisms of neuronal dysfunction in human neurodegenerative diseases? Mol Neurodegener 4:38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Dimitriadi M, Hart AC (2010) Neurodegenerative disorders: insights from the nematode Caenorhabditis elegans. Neurobiol Dis 40:4–11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Alexander AG, Marfil V, Li C (2014) Use of Caenorhabditis elegans as a model to study Alzheimer’s disease and other neurodegenerative diseases. Front Genet 5:279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Faber PW, Alter JR, MacDonald ME, Hart AC (1999) Polyglutamine-mediated dysfunction and apoptotic death of a Caenorhabditis elegans sensory neuron. Proc Natl Acad Sci U S A 96:179–184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Parker JA, Connolly JB, Wellington C et al (2001) Expanded polyglutamines in Caenorhabditis elegans cause axonal abnormalities and severe dysfunction of PLM mechanosensory neurons without cell death. Proc Natl Acad Sci U S A 98:13318–13323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Gidalevitz T, Ben-Zvi A, Ho KH et al (2006) Progressive disruption of cellular protein folding in models of polyglutamine diseases. Science 311:1471–1474

    Article  PubMed  CAS  Google Scholar 

  63. Vayndorf EM, Scerbak C, Hunter S et al (2016) Morphological remodeling of C. elegans neurons during aging is modified by compromised protein homeostasis. NPJ Aging Mech Dis 2. https://doi.org/10.1038/npjamd.2016.1

  64. Vazquez-Manrique RP, Farina F, Cambon K et al (2016) AMPK activation protects from neuronal dysfunction and vulnerability across nematode, cellular and mouse models of Huntington’s disease. Hum Mol Genet 25:1043–1058

    Article  PubMed  CAS  Google Scholar 

  65. Parker JA, Vazquez-Manrique RP, Tourette C et al (2012) Integration of beta-catenin, sirtuin, and FOXO signaling protects from mutant huntingtin toxicity. J Neurosci 32:12630–12640

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Lejeune FX, Mesrob L, Parmentier F et al (2012) Large-scale functional RNAi screen in C. elegans identifies genes that regulate the dysfunction of mutant polyglutamine neurons. BMC Genomics 13:91

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Neri C (2011) Value of invertebrate genetics and biology to develop neuroprotective and preventive medicine in Huntington’s disease. In: Lo DC, Hughes RE (eds) Neurobiology of Huntington’s disease: applications to drug discovery, Boca Raton, FL, CRC Press/Taylor & Francis

    Google Scholar 

  68. Gohil VM, Offner N, Walker JA et al (2011) Meclizine is neuroprotective in models of Huntington’s disease. Hum Mol Genet 20:294–300

    Article  PubMed  CAS  Google Scholar 

  69. Luthi-Carter R, Taylor DM, Pallos J et al (2010) SIRT2 inhibition achieves neuroprotection by decreasing sterol biosynthesis. Proc Natl Acad Sci U S A 107:7927–7932

    Article  PubMed  PubMed Central  Google Scholar 

  70. Lewis EA, Smith GA (2016) Using Drosophila models of Huntington’s disease as a translatable tool. J Neurosci Methods 265:89–98

    Article  PubMed  CAS  Google Scholar 

  71. Xu Z, Tito AJ, Rui YN, Zhang S (2015) Studying polyglutamine diseases in Drosophila. Exp Neurol 274:25–41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Lu B, Vogel H (2009) Drosophila models of neurodegenerative diseases. Annu Rev Pathol 4:315–342

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Chan HY, Bonini NM (2000) Drosophila models of human neurodegenerative disease. Cell Death Differ 7:1075–1080

    Article  PubMed  CAS  Google Scholar 

  74. Steffan JS, Agrawal N, Pallos J et al (2004) SUMO modification of Huntingtin and Huntington’s disease pathology. Science 304:100–104

    Article  PubMed  CAS  Google Scholar 

  75. Marsh JL, Pallos J, Thompson LM (2003) Fly models of Huntington’s disease. Hum Mol Genet 12 Spec No 2:R187–R193

    Article  PubMed  CAS  Google Scholar 

  76. McGurk L, Berson A, Bonini NM (2015) Drosophila as an in vivo model for human neurodegenerative disease. Genetics 201:377–402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    PubMed  CAS  Google Scholar 

  78. Song W, Onishi M, Jan LY, Jan YN (2007) Peripheral multidendritic sensory neurons are necessary for rhythmic locomotion behavior in Drosophila larvae. Proc Natl Acad Sci U S A 104:5199–5204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Ferrante RJ, Kubilus JK, Lee J et al (2003) Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington’s disease mice. J Neurosci 23:9418–9427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Sadri-Vakili G, Cha JH (2006) Histone deacetylase inhibitors: a novel therapeutic approach to Huntington's disease (complex mechanism of neuronal death). Curr Alzheimer Res 3:403–408

    Article  PubMed  CAS  Google Scholar 

  81. Mielcarek M, Landles C, Weiss A et al (2013) HDAC4 reduction: a novel therapeutic strategy to target cytoplasmic huntingtin and ameliorate neurodegeneration. PLoS Biol 11:e1001717

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Beconi M, Aziz O, Matthews K et al (2012) Oral administration of the pimelic diphenylamide HDAC inhibitor HDACi 4b is unsuitable for chronic inhibition of HDAC activity in the CNS in vivo. PLoS One 7:e44498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Moumne L, Campbell K, Howland D et al (2012) Genetic knock-down of HDAC3 does not modify disease-related phenotypes in a mouse model of Huntington’s disease. PLoS One 7:e31080

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Mielcarek M, Benn CL, Franklin SA et al (2011) SAHA decreases HDAC 2 and 4 levels in vivo and improves molecular phenotypes in the R6/2 mouse model of Huntington’s disease. PLoS One 6:e27746

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Bobrowska A, Paganetti P, Matthias P, Bates GP (2011) Hdac6 knock-out increases tubulin acetylation but does not modify disease progression in the R6/2 mouse model of Huntington’s disease. PLoS One 6:e20696

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Benn CL, Butler R, Mariner L et al (2009) Genetic knock-down of HDAC7 does not ameliorate disease pathogenesis in the R6/2 mouse model of Huntington’s disease. PLoS One 4:e5747

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Miller JP, Holcomb J, Al-Ramahi I et al (2010) Matrix metalloproteinases are modifiers of huntingtin proteolysis and toxicity in Huntington’s disease. Neuron 67:199–212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Jimenez-Sanchez M, Lam W, Hannus M et al (2015) siRNA screen identifies QPCT as a druggable target for Huntington’s disease. Nat Chem Biol 11:347–354

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Bandmann O, Burton EA (2010) Genetic zebrafish models of neurodegenerative diseases. Neurobiol Dis 40:58–65

    Article  PubMed  CAS  Google Scholar 

  90. Becker TS, Rinkwitz S (2012) Zebrafish as a genomics model for human neurological and polygenic disorders. Dev Neurobiol 72:415–428

    Article  PubMed  CAS  Google Scholar 

  91. Chapouton P, Jagasia R, Bally-Cuif L (2007) Adult neurogenesis in non-mammalian vertebrates. Bioessays 29:745–757

    Article  PubMed  CAS  Google Scholar 

  92. Kabashi E, Brustein E, Champagne N, Drapeau P (2011) Zebrafish models for the functional genomics of neurogenetic disorders. Biochim Biophys Acta 1812:335–345

    Article  PubMed  CAS  Google Scholar 

  93. Xi Y, Noble S, Ekker M (2011) Modeling neurodegeneration in zebrafish. Curr Neurol Neurosci Rep 11:274–282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Kizil C, Kaslin J, Kroehne V, Brand M (2012) Adult neurogenesis and brain regeneration in zebrafish. Dev Neurobiol 72:429–461

    Article  PubMed  Google Scholar 

  95. Babin PJ, Goizet C, Raldua D (2014) Zebrafish models of human motor neuron diseases: advantages and limitations. Prog Neurobiol 118:36–58

    Article  PubMed  CAS  Google Scholar 

  96. Howe K, Clark MD, Torroja CF et al (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496:498–503

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Vacaru AM, Unlu G, Spitzner M et al (2014) In vivo cell biology in zebrafish – providing insights into vertebrate development and disease. J Cell Sci 127:485–495

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Oosterhof N, Boddeke E, van Ham TJ (2015) Immune cell dynamics in the CNS: learning from the zebrafish. Glia 63:719–735

    Article  PubMed  Google Scholar 

  99. Das S, Rajanikant GK (2014) Huntington disease: can a zebrafish trail leave more than a ripple? Neurosci Biobehav Rev 45:258–261

    Article  PubMed  CAS  Google Scholar 

  100. Miller VM, Nelson RF, Gouvion CM et al (2005) CHIP suppresses polyglutamine aggregation and toxicity in vitro and in vivo. J Neurosci 25:9152–9161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Schiffer NW, Broadley SA, Hirschberger T et al (2007) Identification of anti-prion compounds as efficient inhibitors of polyglutamine protein aggregation in a zebrafish model. J Biol Chem 282:9195–9203

    Article  PubMed  CAS  Google Scholar 

  102. Lumsden AL, Henshall TL, Dayan S et al (2007) Huntingtin-deficient zebrafish exhibit defects in iron utilization and development. Hum Mol Genet 16:1905–1920

    Article  PubMed  CAS  Google Scholar 

  103. Lo Sardo V, Zuccato C, Gaudenzi G et al (2012) An evolutionary recent neuroepithelial cell adhesion function of huntingtin implicates ADAM10-Ncadherin. Nat Neurosci 15:713–721

    Article  PubMed  CAS  Google Scholar 

  104. Lee WC, Yoshihara M, Littleton JT (2004) Cytoplasmic aggregates trap polyglutamine-containing proteins and block axonal transport in a Drosophila model of Huntington’s disease. Proc Natl Acad Sci U S A 101:3224–3229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Steinert JR, Campesan S, Richards P et al (2012) Rab11 rescues synaptic dysfunction and behavioural deficits in a Drosophila model of Huntington’s disease. Hum Mol Genet 21:2912–2922

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Arribat Y, Bonneaud N, Talmat-Amar Y et al (2013) A huntingtin peptide inhibits polyQ-huntingtin associated defects. PLoS One 8:e68775

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Gomez-Marin A, Louis M (2012) Active sensation during orientation behavior in the Drosophila larva: more sense than luck. Curr Opin Neurobiol 22:208–215

    Article  PubMed  CAS  Google Scholar 

  108. Gomez-Marin A, Stephens GJ, Louis M (2011) Active sampling and decision making in Drosophila chemotaxis. Nat Commun 2:441

    Article  PubMed  CAS  Google Scholar 

  109. Song W, Smith MR, Syed A et al (2013) Morphometric analysis of Huntington’s disease neurodegeneration in Drosophila. Methods Mol Biol 1017:41–57

    Article  PubMed  CAS  Google Scholar 

  110. Bodily KD, Morrison CM, Renden RB, Broadie K (2001) A novel member of the Ig superfamily, turtle, is a CNS-specific protein required for coordinated motor control. J Neurosci 21:3113–3125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Pan L, Woodruff E, Liang P, Broadie K (2008) Mechanistic relationships between Drosophila fragile X mental retardation protein and metabotropic glutamate receptor. A signaling. Mol Cell Neurosci 37:747–760

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Shiraishi R, Tamura T, Sone M, Okazawa H (2014) Systematic analysis of fly models with multiple drivers reveals different effects of ataxin-1 and huntingtin in neuron subtype-specific expression. PLoS One 9:e116567

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Lanson NA, Maltare A, King H et al (2011) A Drosophila model of FUS-related neurodegeneration reveals genetic interaction between FUS and TDP-43. Hum Mol Genet 20:2510–2523

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Bischof J, Maeda RK, Hediger M et al (2007) An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc Natl Acad Sci U S A 104:3312–3317

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

Support was provided by HD CARE, R01-NS-045283.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Lawrence Marsh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chongtham, A. et al. (2018). Nonmammalian Models of Huntington’s Disease. In: Precious, S., Rosser, A., Dunnett, S. (eds) Huntington’s Disease. Methods in Molecular Biology, vol 1780. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7825-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7825-0_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7824-3

  • Online ISBN: 978-1-4939-7825-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics