Skip to main content
Log in

Differential effects of nitric oxide on the responsiveness of tactile hairs

  • Original Paper
  • Published:
Invertebrate Neuroscience

Abstract

The responses of tactile hairs located on legs of the desert locust Schistocerca gregaria (Forskål) are modulated by nitric oxide (NO). There are two types of tactile hair on the tibia of the hind leg of the locust which differ in their thresholds for mechanical stimulation, their location on the leg and in the effect of NO on their responses to deflection. The spike response rates of mechanosensory neurons of low-threshold hairs decreased when exposed to elevated NO levels caused by perfusion of the leg with saline containing the NO donor PAPANONOate. In contrast, in high-threshold hairs, which show low responsiveness under control conditions, an increase in spike rates was observed during PAPANONOate application. These opposing effects of NO reduce the differences in the spike responses of the two types of tactile hairs to mechanical stimulation and are likely to have an impact on behaviours elicited by mechanical stimulation of the legs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abisgold JD, Simpson SJ (1988) The effect of dietary protein levels and haemolymph composition on the sensitivity of the maxillary palp chemoreceptors of locusts. J Exp Biol 135:215–229

    CAS  Google Scholar 

  • Annunziato L, Pannaccione A, Cataldi M, Secondo A, Castaldo P, Di Renzo G, Taglialatela M (2002) Modulation of ion channels by reactive oxygen and nitrogen species: a pathophysiological role in brain aging? Neurobiol Aging 23:819–834

    Article  PubMed  CAS  Google Scholar 

  • Brenner R, Atkinson NS (1997) Calcium-activated potassium channel gene expression in the midgut of Drosophila. Comp Biochem Physiol B 118:411–420

    Article  PubMed  CAS  Google Scholar 

  • Chiesa N, Rosati B, Arcangeli A, Olivotto M, Wanke E (1997) A novel role for HERG K+ channels: spike-frequency adaptation. J Physiol 501:313–318

    Article  PubMed  CAS  Google Scholar 

  • Damann N, Voets T, Nilius B (2008) TRPs in our senses. Curr Biol 18:R880–R889

    Article  PubMed  CAS  Google Scholar 

  • Fergestad T, Sale H, Bostwick B, Schaffer A, Ho LL, Robertson GA, Ganetzky B (2010) Drosophila behavioural mutant, down and out (dao), is defective in an essential regulator of Erg potassium channels. Proc Natl Acad Sci USA 107:5617–5621

    Article  PubMed  CAS  Google Scholar 

  • French AS (1986) The role of calcium in the rapid adaptation of an insect mechanoreceptor. J Neurosci 6:2322–2326

    PubMed  CAS  Google Scholar 

  • Gillespie PG, Walker RG (2001) Molecular basis of mechanosensory transduction. Nature 413:194–202

    Article  PubMed  CAS  Google Scholar 

  • Hodgson ES, Lettvin JY, Roeder KD (1955) Physiology of a primary chemoreceptor unit. Science 122:417–418

    Article  PubMed  CAS  Google Scholar 

  • Inoue R (2005) TRP channels as a newly emerging islon-voltage-gated Ca2+ entry channel superfamily. Curr Pharm Des 11:1899–1914

    Article  PubMed  CAS  Google Scholar 

  • Keyser MR, Witten JL (2005) Calcium-activated potassium channel of the tobacco hornworm, Manduca sexta: molecular characterization and expression analysis. J Exp Biol 208:4167–4179

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Chapleau MW, Bates JN, Bielefeldt K, Lee H-C, Abboud FM (1998) Nitric oxide as an autocrine regulator of sodium currents in baroreceptor neurons. Neuron 20:1039–1049

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Leonard AS, Motto DG, Feller MA, Price MP, Johnson WA, Welsh MJ (2003) Contribution of Drosophila DEG/ENaC genes to salt taste. Neuron 39:133–146

    Article  PubMed  CAS  Google Scholar 

  • Newland PL (1991) Physiological properties of afferents from tactile hairs on the hind legs of the locust. J Exp Biol 155:487–503

    PubMed  CAS  Google Scholar 

  • Nie H-G, Chen L, Han D-Y, Li J, Song W-F, Wei S-P, Fang X-H, Gu X, Matalon S, Ji H-L (2009) Regulation of epithelial sodium channels by cGMP/PKGII. J Physiol 587:2663–2676

    Article  PubMed  CAS  Google Scholar 

  • Oliver D, Taberner AM, Thurm H, Sausbier M, Arntz C, Ruth P, Fakler B, Liberman MC (2006) The role of BKCa channels in electrical signal encoding in the mammalian auditory periphery. J Neurosci 26:6181–6189

    Article  PubMed  CAS  Google Scholar 

  • Pflüger H-J (1980) The function of hair sensilla on the locust’s leg: the role of tibial hairs. J Exp Biol 87:163–175

    Google Scholar 

  • Philippides A, Husbands P, O’Shea M (2000) Four-dimensional neuronal signalling by nitric oxide: a computational analysis. J Neurosci 20:1199–1207

    PubMed  CAS  Google Scholar 

  • Renganathan M, Cummins TR, Waxman SG (2002) Nitric oxide blocks fast, slow and persistent Na+ channels in C-type DRG neurons by S-nitrosylation. J Neurophysiol 87:761–775

    PubMed  CAS  Google Scholar 

  • Schuppe H, Cuttle M, Newland PL (2007) Nitric oxide modulates sodium taste via a cGMP-independent pathway. Develop Neurobiol 67:219–232

    Article  CAS  Google Scholar 

  • Simpson SJ, Raubenheimer D (1996) Feeding behaviour, sensory physiology and nutrient feedback: a unifying model. Entomol Exp Appl 80:55–64

    Article  CAS  Google Scholar 

  • Simpson SJ, James S, Simmonds MSJ, Blaney WM (1991) Variation in chemosensitivity and the control of dietary selection behaviour in the locust. Appetite 17:141–154

    Article  PubMed  CAS  Google Scholar 

  • Taglialatela M, Pannaccione A, Iossa S, Castaldo P, Annunziato L (1999) Modulation of the K+ channels encoded by the human ether-a-gogo-related gene-1 (hERG1) by nitric oxide. Mol Pharmacol 56:1298–1308

    PubMed  CAS  Google Scholar 

  • Venkatachalam K, Montell C (2007) TRP channels. Ann Rev Biochem 76:387–417

    Article  PubMed  CAS  Google Scholar 

  • Walker RG, Willingham AT, Zuker CS (2000) A Drosophila mechanosensory transduction channel. Science 287:2229–2234

    Article  PubMed  CAS  Google Scholar 

  • Wegener JW, Boekhoff I, Tareilus E, Breer H (1993) Olfactory signaling in antennal receptor neurons of the locust (Locusta migratoria). J Insect Physiol 39:153–163

    Article  Google Scholar 

  • Yoshida T, Inoue R, Morii T, Takahashi N, Yamamoto S, Hara Y, Tominaga M, Shimizu S, Sato Y, Mori Y (2006) Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nature Chem Biol 2:596–607

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by an award from the Biotechnology and Biological Sciences Research Council to PLN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hansjürgen Schuppe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuppe, H., Newland, P.L. Differential effects of nitric oxide on the responsiveness of tactile hairs. Invert Neurosci 11, 85–90 (2011). https://doi.org/10.1007/s10158-011-0119-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10158-011-0119-0

Keywords

Navigation