Skip to main content
Log in

Influence of a Nitric Oxide Donor on Electrical Characteristics of the Premotor Interneurons of Terrestrial Snails

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

It has been found that application of a nitric oxide donor—the sodium nitroprusside—causes the hyperpolarization shift of the membrane potential of the premotor interneurons of defensive behavior of terrestrial snails. It is assumed that the response of a neuron to NO depends on its location in the neural network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Cleary, L. J., Lee, W. L., Byrne, J. H. (1998). Cellular correlates of long-term sensitization in Aplysia. Journal of Neuroscience, 18, 5988–5998.

    Google Scholar 

  2. Gainutdinov, K. L., Chekmarev, L. Y., Gainutdinova, T. H. (1998). Excitability increase in withdrawal interneurons after conditioning in snail. NeuroReport, 9, 517–520. doi:10.1097/00001756-199802160-00026.

    Article  Google Scholar 

  3. Schulz, D. J. (2006). Plasticity and stability in neuronal output via changes in intrinsic excitability: it’s what’s inside that counts. Journal of Experimental Biology, 209, 4821–4827.

    Article  Google Scholar 

  4. Mozzachiodi, R., Lorenzetti, F. D., Baxter, D. A., Byrne, J. H. (2008). Changes in neuronal excitability serve as a mechanism of long-term memory for operant conditioning. Nature Neurosci, 11, 1146–1148. doi:10.1038/nn.2184.

    Article  Google Scholar 

  5. Nikitin, E. S., Balaban, P. M., Kemenes, G. (2013). Nonsynaptic plasticity underlies a compartmentalized increase in synaptic efficacy after classical conditioning. Current Biol, 23, 614–619. doi:10.1026/j.cub.2013.02.048.

    Article  Google Scholar 

  6. Gainutdinov, K. L., Andrianov, V. V., Gainutdinova, T. K. (2011). Changes of the neuronal membrane excitability as cellular mechanisms of learning and memory. Uspekhi Physiologicheskikh Nauk (Russian), 42, 33–52. PMID: 21442956.

    Google Scholar 

  7. Vanin, A. F. (1998). Dinitrosyl iron complexes and S-nitrosothiol—two possible forms of stabilization and transport of nitric oxide in biological systems. Biohimia (in Russian), 63, 924–938.

    Google Scholar 

  8. Calabrese, V., Cornelius, C., Rizzarelli, E., Owen, J. B., Dinkova-Kostova, A. T., Butterfield, D. A. (2009). Nitric oxide in cell survival: a janus molecule. Antioxidants and Redox Signaling, 11, 2717–2739.

    Article  Google Scholar 

  9. Steinert, J. R., Chernova, T., Forsythe, I. D. (2010). Nitric oxide signaling in brain function, dysfunction, and dementia. The Neuroscientist, 16, 435–452. doi:10.1177/1073858410366481.

    Article  Google Scholar 

  10. Balaban, P. M., Roshchin, M. V., Timoshenko, A. K., Gainutdinov, K. L., Bogodvid, T. K., Muranova, L. N., Zuzina, A. B., Korshunova, T. A. (2014). Nitric oxide is necessary for labilization of a consolidated context memory during reconsolidation in terrestrial snails. European Journal of Neuroscience, 40, 2963–2970. doi:10.1111/ejn.12642.

    Article  Google Scholar 

  11. Huang, S., Kershbaum, H. H., Engel, E., Hermann, A. (1997). Biochemical characterization and histochemikal localization of nitric oxide synthase in the nervous system of the snail, Helix pomatia. Journal of Neurochemistry, 69, 2516–2528.

    Article  Google Scholar 

  12. Teyke, T. (1996). Nitric oxide, but not serotonin, is involved in acquisition of food-attraction conditioning in the snail Helix pomatia. Neuroscience Letters, 206, 29–32.

    Article  Google Scholar 

  13. Susswein, A. J., Katzoff, A., Miller, N., Hurwitz, I. (2004). Nitric oxide and memory. The Neuroscientist, 10, 153–162.

    Article  Google Scholar 

  14. Muranova, L. N., Bogodvid, T. K., Andrianov, V. V., Gainutdinov, K. L. (2016). Effects of NO donors and inhibitors of NO synthase and guanylate cyclase on the acquisition of a conditioned defense food aversion response in edible snails. Bull Experim Biol Med, 160, 414–416. doi:10.1007/s10517-016-3184-x.

    Article  Google Scholar 

  15. Zsombok, A., Schrofner, S., Hermann, A., Kerschbaum, H. H. (2000). Nitric oxide increases excitability by depressing a calcium activated potassium current in snail neurons. Neuroscience Letters, 295(3), 85–88.

    Article  Google Scholar 

  16. Balaban, P. M. (2002). Cellular mechanisms of behavioral plasticity in terrestrial snail. Neuroscience Biobehavioral Review 26, 597–630.

  17. Balaban, P. M., Bravarenko, N. I., Maksimova, O. A., Nikitin, E., Ierusalimsky, V. N., Zakharov, I. S. (2001). A single serotoninergic modulatory cell can mediate reinforcement in the withdrawal network of the terrestrial snail. Neurobiology of Learning and Memory, 75, 30–50. doi:10.1006/nlme.1999.3953.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalil L. Gainutdinov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogodvid, T.K., Andrianov, V.V., Muranova, L.N. et al. Influence of a Nitric Oxide Donor on Electrical Characteristics of the Premotor Interneurons of Terrestrial Snails. BioNanoSci. 6, 320–321 (2016). https://doi.org/10.1007/s12668-016-0221-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-016-0221-1

Keywords

Navigation