Invertebrate Neuroscience

, Volume 7, Issue 1, pp 67–73 | Cite as

Insect nicotinic acetylcholine receptor gene families: from genetic model organism to vector, pest and beneficial species

  • Andrew K. Jones
  • Laurence A. Brown
  • David B. Sattelle
Review

Abstract

Nicotinic acetylcholine receptors (nAChRs) mediate fast synaptic transmission in the insect nervous system and are targets of a major group of insecticides, the neonicotinoids. Analyses of genome sequences have shown that nAChR gene families remain compact in diverse insect species, when compared to their mammalian counterparts. Thus, Drosophila melanogaster and Anopheles gambiae each possess 10 nAChR genes while Apis mellifera has 11. Although these are among the smallest nAChR gene families known, receptor diversity can be considerably increased by alternative splicing and mRNA A-to-I editing, thereby generating species-specific subunit isoforms. In addition, each insect possesses at least one highly divergent nAChR subunit. Species-specific subunit diversification may offer promising targets for future rational design of insecticides that act on particular pests while sparing beneficial insects. Electrophysiological studies on cultured Drosophila cholinergic neurons show partial agonist actions of the neonicotinoid imidacloprid and super-agonist actions of another neonicotinoid, clothianidin, on native nAChRs. Recombinant hybrid heteromeric nAChRs comprising Drosophila Dα2 and a vertebrate β2 subunit have been instructive in mimicking such actions of imidacloprid and clothianidin. Unitary conductance measurements on native nAChRs indicate that more frequent openings of the largest conductance state may offer an explanation for the superagonist actions of clothianidin.

Keywords

Alternative splicing Anopheles gambiae Apis mellifera Clothianidin Drosophila melanogaster Imidacloprid Insect Ion channels Neonicotinoid Nicotinic acetylcholine receptor Nilaparvata lugens RNA editing 

References

  1. Aridon P, Marini C, Di Resta C, Brilli E, De Fusco M, Politi F, Parrini E, Manfredi I, Pisano T, Pruna D, Curia G, Cianchetti C, Pasqualetti M, Becchetti A, Guerrini R, Casari G (2006) Increased sensitivity of the neuronal nicotinic receptor alpha 2 subunit causes familial epilepsy with nocturnal wandering and ictal fear. Am J Hum Genet 79:342–350PubMedCrossRefGoogle Scholar
  2. Bass C, Lansdell SJ, Millar NS, Schroeder I, Turberg A, Field LM, Williamson MS (2006) Molecular characterisation of nicotinic acetylcholine receptor subunits from the cat flea, Ctenocephalides felis (Siphonaptera: Pulicidae). Insect Biochem Mol Biol 36:86–96PubMedCrossRefGoogle Scholar
  3. Bentley GN, Jones AK, Oliveros Parra WG, Agnew A (2004) ShAR1alpha and ShAR1beta: novel putative nicotinic acetylcholine receptor subunits from the platyhelminth blood fluke Schistosoma. Gene 329:27–38PubMedCrossRefGoogle Scholar
  4. Borges LS, Ferns M (2001) Agrin-induced phosphorylation of the acetylcholine receptor regulates cytoskeletal anchoring and clustering. J Cell Biol 153:1–12PubMedCrossRefGoogle Scholar
  5. Brown LA, Ihara M, Buckingham SD, Matsuda K, Sattelle DB (2006a) Neonicotinoid insecticides display partial and super agonist actions on native insect nicotinic acetylcholine receptors. J Neurochem 99:608–615CrossRefGoogle Scholar
  6. Brown LA, Jones AK, Buckingham SD, Mee CJ, Sattelle DB (2006b) Contributions from Caenorhabditis elegans functional genetics to antiparasitic drug target identification and validation: nicotinic acetylcholine receptors, a case study. Int J Parasitol 36:617–624CrossRefGoogle Scholar
  7. Corringer PJ, Le Novere N, Changeux JP (2000) Nicotinic receptors at the amino acid level. Annu Rev Pharmacol Toxicol 40:431–458PubMedCrossRefGoogle Scholar
  8. Deglise P, Grunewald B, Gauthier M (2002) The insecticide imidacloprid is a partial agonist of the nicotinic receptor of honeybee Kenyon cells. Neurosci Lett 321:13–16PubMedCrossRefGoogle Scholar
  9. Fayyazuddin A, Zaheer MA, Hiesinger PR, Bellen HJ (2006) The nicotinic acetylcholine receptor Dalpha7 is required for an escape behavior in Drosophila. PLoS Biol 4:e63PubMedCrossRefGoogle Scholar
  10. Gallowitsch-Puerta M, Tracey KJ (2005) Immunologic role of the cholinergic anti-inflammatory pathway and the nicotinic acetylcholine alpha 7 receptor. Ann NY Acad Sci 1062:209–219PubMedCrossRefGoogle Scholar
  11. Gehle VM, Walcott EC, Nishizaki T, Sumikawa K (1997) N-glycosylation at the conserved sites ensures the expression of properly folded functional ACh receptors. Brain Res Mol Brain Res 45:219–229PubMedCrossRefGoogle Scholar
  12. Gotti C, Zoli M, Clementi F (2006) Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends Pharmacol Sci 27:482–491PubMedCrossRefGoogle Scholar
  13. Grauso M, Reenan RA, Culetto E, Sattelle DB (2002) Novel putative nicotinic acetylcholine receptor subunit genes, dalpha5, dalpha6 and dalpha7, in Drosophila melanogaster identify a new and highly conserved target of adenosine deaminase acting on RNA-mediated A-to-I pre-mRNA editing. Genetics 160:1519–1533PubMedGoogle Scholar
  14. Green WN, Wanamaker CP (1997) The role of the cystine loop in acetylcholine receptor assembly. J Biol Chem 272:20945–20953PubMedCrossRefGoogle Scholar
  15. Guzman GR, Santiago J, Ricardo A, Marti-Arbona R, Rojas LV, Lasalde-Dominicci JA (2003) Tryptophan scanning mutagenesis in the alphaM3 transmembrane domain of the Torpedo californica acetylcholine receptor: functional and structural implications. Biochemistry 42:12243–12250PubMedCrossRefGoogle Scholar
  16. Hoopengardner B, Bhalla T, Staber C, Reenan R (2003) Nervous system targets of RNA editing identified by comparative genomics. Science 301:832–836PubMedCrossRefGoogle Scholar
  17. Hopfield JF, Tank DW, Greengard P, Huganir RL (1988) Functional modulation of the nicotinic acetylcholine receptor by tyrosine phosphorylation. Nature 336:677–680PubMedCrossRefGoogle Scholar
  18. Ihara M, Matsuda K, Otake M, Kuwamura M, Shimomura M, Komai K, Akamatsu M, Raymond V, Sattelle DB (2003) Diverse actions of neonicotinoids on chicken alpha7, alpha4beta2 and Drosophila-chicken SADbeta2 and ALSbeta2 hybrid nicotinic acetylcholine receptors expressed in Xenopus laevis oocytes. Neuropharmacology 45:133–144PubMedCrossRefGoogle Scholar
  19. Ihara M, Matsuda K, Shimomura M, Sattelle DB, Komai K (2004) Super agonist actions of clothianidin and related compounds on the SAD beta 2 nicotinic acetylcholine receptor expressed in Xenopus laevis oocytes. Biosci Biotechnol Biochem 68:761–763PubMedCrossRefGoogle Scholar
  20. Jones AK, Sattelle DB (2004) Functional genomics of the nicotinic acetylcholine receptor gene family of the nematode, Caenorhabditis elegans. Bioessays 26:39–49PubMedCrossRefGoogle Scholar
  21. Jones AK, Sattelle DB (2006) The cys-loop ligand-gated ion channel superfamily of the honeybee, Apis mellifera. Invert Neurosci 6:123–132PubMedCrossRefGoogle Scholar
  22. Jones AK, Elgar G, Sattelle DB (2003) The nicotinic acetylcholine receptor gene family of the pufferfish, Fugu rubripes. Genomics 82:441–451PubMedCrossRefGoogle Scholar
  23. Jones AK, Buckingham SD, Sattelle DB (2005a) Chemistry-to-gene screens in Caenorhabditis elegans. Nat Rev Drug Discov 4:321–330CrossRefGoogle Scholar
  24. Jones AK, Grauso M, Sattelle DB (2005b) The nicotinic acetylcholine receptor gene family of the malaria mosquito, Anopheles gambiae. Genomics 85:176–187CrossRefGoogle Scholar
  25. Jones AK, Marshall J, Blake AD, Buckingham SD, Darlison MG, Sattelle DB (2005c) Sgbeta1, a novel locust (Schistocerca gregaria) non-alpha nicotinic acetylcholine receptor-like subunit with homology to the Drosophila melanogaster Dbeta1 subunit. Invert Neurosci 5:147–155CrossRefGoogle Scholar
  26. Jones AK, Raymond-Delpech V, Thany SH, Gauthier M, Sattelle DB (2006) The nicotinic acetylcholine receptor gene family of the honey bee, Apis mellifera. Genome Res 16:1422–1430PubMedCrossRefGoogle Scholar
  27. Kao PN, Dwork AJ, Kaldany RR, Silver ML, Wideman J, Stein S, Karlin A (1984) Identification of the alpha subunit half-cystine specifically labeled by an affinity reagent for the acetylcholine receptor binding site. J Biol Chem 259:11662–11665PubMedGoogle Scholar
  28. Lansdell SJ, Millar NS (2000) Cloning and heterologous expression of Dalpha4, a Drosophila neuronal nicotinic acetylcholine receptor subunit: identification of an alternative exon influencing the efficiency of subunit assembly. Neuropharmacology 39:2604–2614PubMedCrossRefGoogle Scholar
  29. Lansdell SJ, Millar NS (2002) Dbeta3, an atypical nicotinic acetylcholine receptor subunit from Drosophila: molecular cloning, heterologous expression and coassembly. J Neurochem 80:1009–1018PubMedCrossRefGoogle Scholar
  30. Liu Z, Williamson MS, Lansdell SJ, Denholm I, Han Z, Millar NS (2005) A nicotinic acetylcholine receptor mutation conferring target-site resistance to imidacloprid in Nilaparvata lugens (brown planthopper). Proc Natl Acad Sci USA 102:8420–8425PubMedCrossRefGoogle Scholar
  31. Liu Z, Williamson MS, Lansdell SJ, Han Z, Denholm I, Millar NS (2006) A nicotinic acetylcholine receptor mutation (Y151S) causes reduced agonist potency to a range of neonicotinoid insecticides. J Neurochem 99:1273–1281PubMedCrossRefGoogle Scholar
  32. Matsuda K, Buckingham SD, Freeman JC, Squire MD, Baylis HA, Sattelle DB (1998) Effects of the alpha subunit on imidacloprid sensitivity of recombinant nicotinic acetylcholine receptors. Br J Pharmacol 123:518–524PubMedCrossRefGoogle Scholar
  33. Matsuda K, Buckingham SD, Kleier D, Rauh JJ, Grauso M, Sattelle DB (2001) Neonicotinoids: insecticides acting on insect nicotinic acetylcholine receptors. Trends Pharmacol Sci 22:573–580PubMedCrossRefGoogle Scholar
  34. Matsuda K, Shimomura M, Ihara M, Akamatsu M, Sattelle DB (2005) Neonicotinoids show selective and diverse actions on their nicotinic receptor targets: electrophysiology, molecular biology, and receptor modeling studies. Biosci Biotechnol Biochem 69:1442–1452PubMedCrossRefGoogle Scholar
  35. Mencke N, Jeschke P (2002) Therapy and prevention of parasitic insects in veterinary medicine using imidacloprid. Curr Top Med Chem 2:701–715PubMedCrossRefGoogle Scholar
  36. Millar NS (2003) Assembly and subunit diversity of nicotinic acetylcholine receptors. Biochem Soc Trans 31:869–874PubMedCrossRefGoogle Scholar
  37. Mongan NP, Jones AK, Smith GR, Sansom MS, Sattelle DB (2002) Novel alpha7-like nicotinic acetylcholine receptor subunits in the nematode Caenorhabditis elegans. Protein Sci 11:1162–1171PubMedCrossRefGoogle Scholar
  38. Morgan NV, Brueton LA, Cox P, Greally MT, Tolmie J, Pasha S, Aligianis IA, van Bokhoven H, Marton T, Al-Gazali L, Morton JE, Oley C, Johnson CA, Trembath RC, Brunner HG, Maher ER (2006) Mutations in the embryonal subunit of the acetylcholine receptor (CHRNG) cause lethal and Escobar variants of multiple pterygium syndrome. Am J Hum Genet 79:390–395PubMedCrossRefGoogle Scholar
  39. Nagata K, Aistrup GL, Song JH, Narahashi T (1996) Subconductance-state currents generated by imidacloprid at the nicotinic acetylcholine receptor in PC 12 cells. Neuroreport 7:1025–1028PubMedCrossRefGoogle Scholar
  40. Nauen R, Denholm I (2005) Resistance of insect pests to neonicotinoid insecticides: current status and future prospects. Arch Insect Biochem Physiol 58:200–215PubMedCrossRefGoogle Scholar
  41. Nishizaki T (2003) N-glycosylation sites on the nicotinic ACh receptor subunits regulate receptor channel desensitization and conductance. Brain Res Mol Brain Res 114:172–176PubMedCrossRefGoogle Scholar
  42. Raymond-Delpech V, Matsuda K, Sattelle BM, Rauh JJ, Sattelle DB (2005) Ion channels: molecular targets of neuroactive insecticides. Invert Neurosci 5:119–133PubMedCrossRefGoogle Scholar
  43. Revah F, Bertrand D, Galzi JL, Devillers-Thiery A, Mulle C, Hussy N, Bertrand S, Ballivet M, Changeux JP (1991) Mutations in the channel domain alter desensitization of a neuronal nicotinic receptor. Nature 353:846–849PubMedCrossRefGoogle Scholar
  44. Rozycka A, Trzeciak WH (2003) Genetic basis of autosomal dominant nocturnal frontal lobe epilepsy. J Appl Genet 44:197–207PubMedGoogle Scholar
  45. Rust MK (2005) Advances in the control of Ctenocephalides felis (cat flea) on cats and dogs. Trends Parasitol 21:232–236PubMedCrossRefGoogle Scholar
  46. Saragoza PA, Modir JG, Goel N, French KL, Li L, Nowak MW, Stitzel JA (2003) Identification of an alternatively processed nicotinic receptor alpha7 subunit RNA in mouse brain. Brain Res Mol Brain Res 117:15–26PubMedCrossRefGoogle Scholar
  47. Sattelle DB, Jones AK, Sattelle BM, Matsuda K, Reenan R, Biggin PC (2005) Edit, cut and paste in the nicotinic acetylcholine receptor gene family of Drosophila melanogaster. Bioessays 27:366–376PubMedCrossRefGoogle Scholar
  48. Seeburg PH (2002) A-to-I editing: new and old sites, functions and speculations. Neuron 35:17–20PubMedCrossRefGoogle Scholar
  49. Shimomura M, Okuda H, Matsuda K, Komai K, Akamatsu M, Sattelle DB (2002) Effects of mutations of a glutamine residue in loop D of the alpha7 nicotinic acetylcholine receptor on agonist profiles for neonicotinoid insecticides and related ligands. Br J Pharmacol 137:162–169PubMedCrossRefGoogle Scholar
  50. Shimomura M, Yokota M, Okumura M, Matsuda K, Akamatsu M, Sattelle DB, Komai K (2003) Combinatorial mutations in loops D and F strongly influence responses of the alpha7 nicotinic acetylcholine receptor to imidacloprid. Brain Res 991:71–77PubMedCrossRefGoogle Scholar
  51. Shimomura M, Yokota M, Matsuda K, Sattelle DB, Komai K (2004) Roles of loop C and the loop B–C interval of the nicotinic receptor alpha subunit in its selective interactions with imidacloprid in insects. Neurosci Lett 363:195–198PubMedCrossRefGoogle Scholar
  52. Sine SM, Engel AG (2006) Recent advances in Cys-loop receptor structure and function. Nature 440:448–455PubMedCrossRefGoogle Scholar
  53. Smit AB, Brejc K, Syed N, Sixma TK (2003) Structure and function of AChBP, homologue of the ligand-binding domain of the nicotinic acetylcholine receptor. Ann NY Acad Sci 998:81–92PubMedCrossRefGoogle Scholar
  54. Stetefeld J, Ruegg MA (2005) Structural and functional diversity generated by alternative mRNA splicing. Trends Biochem Sci 30:515–521PubMedCrossRefGoogle Scholar
  55. Tamamizu S, Lee Y, Hung B, McNamee MG, Lasalde-Dominicci JA (1999) Alteration in ion channel function of mouse nicotinic acetylcholine receptor by mutations in the M4 transmembrane domain. J Membr Biol 170:157–164PubMedCrossRefGoogle Scholar
  56. Thany SH, Crozatier M, Raymond-Delpech V, Gauthier M, Lenaers G (2005) Apisalpha2, apisalpha7–1 and apisalpha7–2: three new neuronal nicotinic acetylcholine receptor alpha-subunits in the honeybee brain. Gene 344:125–132PubMedCrossRefGoogle Scholar
  57. Tomizawa M, Casida JE (2005) Neonicotinoid insecticide toxicology: mechanisms of selective action. Annu Rev Pharmacol Toxicol 45:247–268PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Andrew K. Jones
    • 1
  • Laurence A. Brown
    • 1
  • David B. Sattelle
    • 1
  1. 1.MRC Functional Genetics Unit, Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK

Personalised recommendations