Skip to main content

Advertisement

Log in

Upregulation of prolactin receptor in proximal tubular cells was induced in cardiac dysfunction model mice

  • Original Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

In order to clarify the interaction between cardiac dysfunction and sodium homeostasis in the kidney, we used a murine model of cardiac dysfunction and investigated the effect on sodium transporters in renal tubular cells.

Methods

Cardiac function was deteriorated by abdominal aortic banding, and the gene expression of sodium transporters in the kidneys was evaluated by real-time RT-PCR and compared with that in the kidneys of control mice.

Results

Gene expression of all three variants of the murine prolactin receptor was enhanced by aortic banding. Upregulated prolactin receptor was distributed in the proximal tubular cells of the pars recta in the deep inner cortex and the outer stripe of the outer medulla. Prolactin has been reported to be a natriuretic hormone that inhibits proximal tubular Na+/K+-ATPase activity, resulting in reduced sodium reabsorption and the acceleration of natriuresis. Inhibition of endogenous prolactin secretion by bromocriptine administration decreased the urine sodium excretion in both aortic banding and control mice. On the other hand, excess exogenous prolactin administration enhanced urine potassium excretion in aortic banding mice. Furthermore, a high-sodium diet accelerated urinary sodium excretion, which was also significantly decreased by inhibition of endogenous prolactin secretion in aortic banding mice.

Conclusion

We reported that the prolactin receptor was upregulated by aortic banding treatment. Prolactin-prolactin receptor interaction in the proximal tubular cells of the pars recta should involve a different mechanism of kaliuresis other than inhibition of Na+/K+-ATPase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ronco C, Haapio M, House AA, Anavekar N, Bellomo R. Cardiorenal syndrome. J Am Coll Cardiol. 2008;52:1527–39.

    Article  PubMed  Google Scholar 

  2. Stefanadis CI. Complex interrelationships between heart and kidneys: establishing the role of cardiorenal syndrome. Hell J Cardiol. 2010;51:87–8.

    Google Scholar 

  3. Bongartz LG, Cramer MJ, Doevendans PA, Joles JA, Braam B. The severe cardiorenal syndrome: ‘Guyton revisited’. Eur Heart J. 2005;26:11–7.

    Article  PubMed  Google Scholar 

  4. Akishita M, Iwai M, Wu L, Zhang L, Ouchi Y, Dzau VJ, et al. Inhibitory effect of angiotensin II type 2 receptor on coronary arterial remodeling after aortic banding in mice. Circulation. 2000;102:1684–9.

    Article  CAS  PubMed  Google Scholar 

  5. Hara M, Ono K, Hwang M-W, Iwasaki A, Okada M, Nakatani K, et al. Evidence for a role of mast cells in the evolution to congestive heart failure. J Exp Med. 2002;195:375–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Yayama K, Hiyoshi H, Imazu D, Okamoto H. Angiotensin II stimulates endothelial NO synthase phosphorylation in thoracic aorta of mice with abdominal aortic banding via type 2 receptor. Hypertension. 2006;48:958–64.

    Article  CAS  PubMed  Google Scholar 

  7. McCormick SD, Bradshaw D. Hormonal control of salt and water balance in vertebrates. Gen Comp Endocrinol. 2006;147:3–8.

    Article  CAS  PubMed  Google Scholar 

  8. Pickford GE, Griffith RW, Torretti J, Hendlez E, Epstein FH. Branchial reduction and renal stimulation of (Na+, K+)-ATPase by prolactin in hypophysectomized killfish in fresh water. Nature. 1970;228:378–9.

    Article  CAS  PubMed  Google Scholar 

  9. Pippard C, Baylis PH. Prolactin stimulates Na+-K+-ATPase activity located in the outer renal medulla of the rat. J Endocrinol. 1986;108:95–9.

    Article  CAS  PubMed  Google Scholar 

  10. Ibarra F, Crambert S, Eklöf A-C, Lundquist A, Hansell P, Holtbäck U. Prolactin, a natriuretic hormone, interacting with the renal dopamine system. Kidney Int. 2005;68:1700–7.

    Article  CAS  PubMed  Google Scholar 

  11. Crambert S, Sjöberg A, Eklöf A-C, Ibarra F, Holtbäck U. Prolactin and dopamine 1-like receptor interaction in renal proximal tubular cells. Am J Physiol Renal Physiol. 2010;299:F49–54.

    Article  CAS  PubMed  Google Scholar 

  12. Sakai Y, Hiraoka Y, Ogawa M, Takeuchi Y, Aiso S. The prolactin gene is expressed in the mouse kidney. Kidney Int. 1999;55:833–40.

    Article  CAS  PubMed  Google Scholar 

  13. Binart N, Bachelot A, Bouilly J. Impact of prolactin receptor isoforms on reproduction. Trends Endocrinol Metab. 2010;21:362–8.

    Article  CAS  PubMed  Google Scholar 

  14. Bole-Feysot C, Goffin V, Edery M, Binart N, Kelly PA. Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr Rev. 1998;19:225–68.

    Article  CAS  PubMed  Google Scholar 

  15. Leichtweiss HP, Lübbers DW, Weiss CH, Baumgärtl H, Reschke W. The oxygen supply of the rat kidney: measurements of intrarenal pO2. Pflügers Arch. 1969;309:328–49.

    Article  CAS  PubMed  Google Scholar 

  16. Levy MN, Imperial ES. Oxygen shunting in renal cortical and medullary capillaries. Am J Physiol. 1961;200:159–62.

    CAS  PubMed  Google Scholar 

  17. Vetterlein F, Pethö A, Schmidt G. Distribution of capillary blood flow in rat kidney during postischemic renal failure. Am J Physiol. 1986;251:H510–9.

    CAS  PubMed  Google Scholar 

  18. Hellberg POA, Källskog Ö, Wolgast M. Red cell trapping and postischemic renal blood flow. Differences between the cortex, outer and inner medulla. Kidney Int. 1991;40:625–31.

    Article  PubMed  Google Scholar 

  19. Freeman ME, Kanyicska B, Lerant A, Nagy G. Prolactin: structure, function, and regulation of secretion. Physiol Rev. 2000;80:1523–631.

    CAS  PubMed  Google Scholar 

  20. Devi YS, Shehu A, Stocco C, Halperin J, Le J, Seibold AM, et al. Regulation of transcription factors and repression of Sp1 by prolactin signaling through the short isoform of its cognate receptor. Endocrinology. 2009;150:3327–35.

    Article  CAS  PubMed  Google Scholar 

  21. Katz AI, Doucet A, Morel F. Na-K-ATPase activity along the rabbit, rat, and mouse nephron. Am J Physiol. 1979;237:F114–20.

    CAS  PubMed  Google Scholar 

  22. Goffin V, Bernichtein S, Touraine P, Kelly PA. Development and potential clinical uses of human prolactin receptor antagonists. Endocr Rev. 2005;26:400–22.

    Article  CAS  PubMed  Google Scholar 

  23. Tanaka M, Yoshida H, Furuhashi M, Togashi N, Koyama M, Yamamoto S, et al. Deterioration of renal function by chronic heart failure is associated with congestion and oxidative stress in the tubulointerstitium. Intern Med. 2011;50:2877–87.

    Article  CAS  PubMed  Google Scholar 

  24. Matsumoto M, Tanaka T, Yamamoto T, Noiri E, Miyata T, Inagi R, et al. Hypoperfusion of peritubular capillaries induces chronic hypoxia before progression of tubulointerstitial injury in a progressive model of rat glomerulonephritis. J Am Soc Nephrol. 2004;15:1574–81.

    Article  PubMed  Google Scholar 

  25. Hu ZZ, Zhuang L, Meng J, Dufau ML. Transcriptional regulation of the generic promoter III of the rat prolactin receptor gene by C/EBPβ and Sp1. J Biol Chem. 1998;40:26225–35.

    Article  Google Scholar 

  26. Hirata M, Kugimiya F, Fukai A, Saito T, Yano F, Ikeda T, et al. C/EBPβ and RUNX2 cooperate to degrade cartilage with MMP-13 and the target and HIF-2α as the inducer in chondrocytes. Hum Mol Genet. 2012;21:1111–23.

    Article  CAS  PubMed  Google Scholar 

  27. Koizume S, Ito S, Miyagi E, Hirahara F, Nakamura Y, Sakuma Y, et al. HIF2α-Sp1 interaction mediates a deacetylation-dependent FVII-gene activation under hypoxic conditions in ovarian cancer cells. Nucleic Acids Res. 2012;40:5389–401.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Nangaku M, Inagi R, Miyata T, Fujita T. Hypoxia and hypoxia-inducible factor in renal disease. Nephron Exp Nephron. 2008;110:e1–7.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful for the excellent technical support of N. Imai, K. Yamagiwa, K. Minowa, H. Aita, and T. Watanabe at the Division of Clinical Nephrology and Rheumatology and F. Higuchi at the Division of Applied Molecular Medicine, Niigata University Graduate School of Medical and Dental Sciences. This study was supported by a Grant for the Promotion of Niigata University Research Projects to Y. K.

Conflict of interest

All the authors have declared no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshikatsu Kaneko.

About this article

Cite this article

Tsuchida, Y., Kaneko, Y., Otsuka, T. et al. Upregulation of prolactin receptor in proximal tubular cells was induced in cardiac dysfunction model mice. Clin Exp Nephrol 18, 65–74 (2014). https://doi.org/10.1007/s10157-013-0820-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-013-0820-x

Keywords

Navigation