Skip to main content
Log in

Prolylcarboxypeptidase deficiency is associated with increased blood pressure, glomerular lesions, and cardiac dysfunction independent of altered circulating and cardiac angiotensin II

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Prolylcarboxypeptidase (PRCP) is a carboxypeptidase that cleaves angiotensin II (AngII) forming Ang(1–7). The impact of genetic PRCP deficiency on AngII metabolism, blood pressure (BP), kidney histology, and cardiac phenotype was investigated in two lines of PRCP-deficient mice: KST302 derived in C57BL/6 background and GST090 derived in FVB/N background. The GST090 line had increased mean arterial pressure (MAP) (113.7 ± 2.07 vs. WT 105.0 ± 1.23 mmHg; p < 0.01) and left ventricular hypertrophy (LVH) (ratio of diastolic left ventricular posterior wall dimension to left ventricular diameter 0.239 ± 0.0163 vs. WT 0.193 ± 0.0049; p < 0.05). Mice in the KST302 line also had mild hypertension and LVH. Cardiac defects, increased glomerular size, and glomerular mesangial expansion were also observed. After infusion of AngII to mice in the KST302 line, both MAP and LVH increased, but the constitutive differences between the gene trap mice and controls were no longer observed. Plasma and cardiac AngII and Ang(1–7) were not significantly different between PRCP-deficient mice and controls. Thus, PRCP deficiency is associated with elevated blood pressure and cardiac alterations including LVH and cardiac defects independently of systemic or cardiac AngII and Ang(1–7). An ex vivo assay showed that recombinant PRCP, unlike recombinant ACE2, did not degrade AngII to form Ang(1–7) in plasma at pH 7.4. PRCP was localized in α-intercalated cells of the kidney collecting tubule. The low pH prevailing at this site and the acidic pH preference of PRCP suggest a role of this enzyme in regulating AngII degradation in the collecting tubule where this peptide increases sodium reabsorption and therfore BP. However, there are other potential mechanisms for increased BP in this model that need to be considered as well. PRCP converts AngII to Ang(1–7) but only at an acidic pH. Global PRCP deficiency causes heart and kidney alterations and a moderate rise in BP. PRCP is abundant in the kidney collecting tubules, where the prevailing pH is low. In collecting tubules, PRCP deficiency could result in impaired AngII degradation. Increased AngII at this nephron site stimulates Na reabsorption and increases BP.

Key message

  • Prolylcarboxypeptidase (PRCP) converts AngII to Ang (1–7) but only at an acidic pH.

  • Global PRCP deficiency causes heart and kidney alterations and a moderate rise in BP.

  • PRCP is abundant in the kidney collecting tubules, where the prevailing pH is low.

  • In collecting tubules, PRCP deficiency could result in impaired AngII degradation.

  • Increased AngII at this nephron site stimulates Na reabsorption and increases BP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Odya CE, Marinkovic DV, Hammon KJ, Stewart TA, Erdos EG (1978) Purification and properties of prolylcarboxypeptidase (angiotensinase C) from human kidney. J Biol Chem 253:5927–5931

    CAS  PubMed  Google Scholar 

  2. Yang HY, Erdos EG, Chiang TS (1968) New enzymatic route for the inactivation of angiotensin. Nature 218:1224–1226

    Article  CAS  PubMed  Google Scholar 

  3. Watson B Jr, Nowak NJ, Myracle AD, Shows TB, Warnock DG (1997) The human angiotensinase C gene (HUMPCP) maps to 11q14 within 700 kb of D11S901: a candidate gene for essential hypertension. Genomics 44:365–367

    Article  CAS  PubMed  Google Scholar 

  4. Soisson SM, Patel SB, Abeywickrema PD, Byrne NJ, Diehl RE, Hall DL, Ford RE, Reid JC, Rickert KW, Shipman JM et al (2010) Structural definition and substrate specificity of the S28 protease family: the crystal structure of human prolylcarboxypeptidase. BMC Struct Biol 10:16

    Article  PubMed  PubMed Central  Google Scholar 

  5. Grobe N, Weir NM, Leiva O, Ong FS, Bernstein KE, Schmaier AH, Morris M, Elased KM (2013) Identification of prolyl carboxypeptidase as an alternative enzyme for processing of renal angiotensin II using mass spectrometry. Am J Physiol Cell Physiol 304:C945–C953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Grobe N, Leiva O, Morris M, Elased KM (2015) Loss of prolyl carboxypeptidase in two-kidney, one-clip goldblatt hypertensive mice. PLoS One 10:e0117899

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wallingford N, Perroud B, Gao Q, Coppola A, Gyengesi E, Liu ZW, Gao XB, Diament A, Haus KA, Shariat-Madar Z et al (2009) Prolylcarboxypeptidase regulates food intake by inactivating alpha-MSH in rodents. J Clin Invest 119:2291–2303

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Chajkowski SM, Mallela J, Watson DE, Wang J, McCurdy CR, Rimoldi JM, Shariat-Madar Z (2011) Highly selective hydrolysis of kinins by recombinant prolylcarboxypeptidase. Biochem Biophys Res Commun 405:338–343

    Article  CAS  PubMed  Google Scholar 

  9. Zhao X, Southwick K, Cardasis HL, Du Y, Lassman ME, Xie D, El-Sherbeini M, Geissler WM, Pryor KD, Verras A et al (2010) Peptidomic profiling of human cerebrospinal fluid identifies YPRPIHPA as a novel substrate for prolylcarboxypeptidase. Proteomics 10:2882–2886

    Article  CAS  PubMed  Google Scholar 

  10. Shariat-Madar Z, Mahdi F, Schmaier AH (2002) Identification and characterization of prolylcarboxypeptidase as an endothelial cell prekallikrein activator. J Biol Chem 277:17962–17969

    Article  CAS  PubMed  Google Scholar 

  11. Shariat-Madar Z, Mahdi F, Schmaier AH (2004) Recombinant prolylcarboxypeptidase activates plasma prekallikrein. Blood 103:4554–4561

    Article  CAS  PubMed  Google Scholar 

  12. Adams GN, Stavrou EX, Fang C, Merkulova A, Alaiti MA, Nakajima K, Morooka T, Merkulov S, Larusch GA, Simon DI et al (2013) Prolylcarboxypeptidase promotes angiogenesis and vascular repair. Blood 122:1522–1531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Duan L, Motchoulski N, Danzer B, Davidovich I, Shariat-Madar Z, Levenson VV (2011) Prolylcarboxypeptidase regulates proliferation, autophagy, and resistance to 4-hydroxytamoxifen-induced cytotoxicity in estrogen receptor-positive breast cancer cells. J Biol Chem 286:2864–2876

    Article  CAS  PubMed  Google Scholar 

  14. Adams GN, LaRusch GA, Stavrou E, Zhou Y, Nieman MT, Jacobs GH, Cui Y, Lu Y, Jain MK, Mahdi F et al (2011) Murine prolylcarboxypeptidase depletion induces vascular dysfunction with hypertension and faster arterial thrombosis. Blood 117:3929–3937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang L, Feng Y, Zhang Y, Zhou H, Jiang S, Niu T, Wei LJ, Xu X, Wang X (2006) Prolylcarboxypeptidase gene, chronic hypertension, and risk of preeclampsia. Am J Obstet Gynecol 195:162–171

    Article  CAS  PubMed  Google Scholar 

  16. Xu S, Lind L, Zhao L, Lindahl B, Venge P (2012) Plasma prolylcarboxypeptidase (angiotensinase C) is increased in obesity and diabetes mellitus and related to cardiovascular dysfunction. Clin Chem 58:1110–1115

    Article  CAS  PubMed  Google Scholar 

  17. Kehoe K, Brouns R, Verkerk R, Engelborghs S, De Deyn PP, Hendriks D, De Meester I (2015) Prolyl carboxypeptidase activity decline correlates with severity and short-term outcome in acute ischemic stroke. Neurochem Res 40:81–88

    Article  CAS  PubMed  Google Scholar 

  18. Marangoni RA, Santos RA, Piccolo C (2014) Deficient prolylcarboxypeptidase gene and protein expression in left ventricles of spontaneously hypertensive rats (SHR). Peptides 61:69–74

    Article  CAS  PubMed  Google Scholar 

  19. Gurley SB, Coffman TM (2008) Angiotensin-converting enzyme 2 gene targeting studies in mice: mixed messages. Exp Physiol 93:538–542

    Article  CAS  PubMed  Google Scholar 

  20. Haber PK, Ye M, Wysocki J, Maier C, Haque SK, Batlle D (2014) Angiotensin-converting enzyme 2-independent action of presumed angiotensin-converting enzyme 2 activators: studies in vivo, ex vivo, and in vitro. Hypertension 63:774–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhou C, Garcia-Calvo M, Pinto S, Lombardo M, Feng Z, Bender K, Pryor KD, Bhatt UR, Chabin RM, Geissler WM et al (2010) Design and synthesis of prolylcarboxypeptidase (PrCP) inhibitors to validate PrCP as a potential target for obesity. J Med Chem 53:7251–7263

    Article  CAS  PubMed  Google Scholar 

  22. Ye M, Wysocki J, Gonzalez-Pacheco FR, Salem M, Evora K, Garcia-Halpin L, Poglitsch M, Schuster M, Batlle D (2012) Murine recombinant angiotensin-converting enzyme 2: effect on angiotensin II-dependent hypertension and distinctive angiotensin-converting enzyme 2 inhibitor characteristics on rodent and human angiotensin-converting enzyme 2. Hypertension 60:730–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wysocki J, Ortiz-Melo DI, Mattocks NK, Xu K, Prescott J, Evora K, Ye M, Sparks MA, Haque SK, Batlle D et al (2014) ACE2 deficiency increases NADPH-mediated oxidative stress in the kidney. Physiol Rep 2:e00264

    Article  PubMed  PubMed Central  Google Scholar 

  24. Neves LA, Williams AF, Averill DB, Ferrario CM, Walkup MP, Brosnihan KB (2003) Pregnancy enhances the angiotensin (Ang)-(1-7) vasodilator response in mesenteric arteries and increases the renal concentration and urinary excretion of Ang-(1-7). Endocrinology 144:3338–3343

    Article  CAS  PubMed  Google Scholar 

  25. Allred AJ, Chappell MC, Ferrario CM, Diz DI (2000) Differential actions of renal ischemic injury on the intrarenal angiotensin system. Am J Physiol Renal Physiol 279:F636–F645

    CAS  PubMed  Google Scholar 

  26. Qi Z, Whitt I, Mehta A, Jin J, Zhao M, Harris RC, Fogo AB, Breyer MD (2004) Serial determination of glomerular filtration rate in conscious mice using FITC-inulin clearance. Am J Physiol Renal Physiol 286:F590–F596

    Article  CAS  PubMed  Google Scholar 

  27. Hudkins KL, Pichaiwong W, Wietecha T, Kowalewska J, Banas MC, Spencer MW, Muhlfeld A, Koelling M, Pippin JW, Shankland SJ et al (2010) BTBR Ob/Ob mutant mice model progressive diabetic nephropathy. J Am Soc Nephrol 21:1533–1542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ye M, Wysocki J, William J, Soler MJ, Cokic I, Batlle D (2006) Glomerular localization and expression of angiotensin-converting enzyme 2 and angiotensin-converting enzyme: implications for albuminuria in diabetes. J Am Soc Nephrol 17:3067–3075

    Article  CAS  PubMed  Google Scholar 

  29. Stehberger PA, Schulz N, Finberg KE, Karet FE, Giebisch G, Lifton RP, Geibel JP, Wagner CA (2003) Localization and regulation of the ATP6V0A4 (a4) vacuolar H+-ATPase subunit defective in an inherited form of distal renal tubular acidosis. J Am Soc Nephrol 14:3027–3038

    Article  CAS  PubMed  Google Scholar 

  30. Azam S, Desjardins CL, Schluchter M, Liner A, Stelzer JE, Yu X, Hoit BD (2012) Comparison of velocity vector imaging echocardiography with magnetic resonance imaging in mouse models of cardiomyopathy. Circ Cardiovasc Imaging 5:776–781

    Article  PubMed  PubMed Central  Google Scholar 

  31. Xiao HD, Fuchs S, Campbell DJ, Lewis W, Dudley SC Jr, Kasi VS, Hoit BD, Keshelava G, Zhao H, Capecchi MR et al (2004) Mice with cardiac-restricted angiotensin-converting enzyme (ACE) have atrial enlargement, cardiac arrhythmia, and sudden death. Am J Pathol 165:1019–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Irfan S, Patricia V, Daniel B (2014) Vacuolar H+-ATPase in distal renal tubular acidosis and diabetes. In: Nakamura S (ed) Handbook of H+-ATPases, 1st edn. Pan Stanford Publishing, Singapore, pp 271–292

  33. Valles P, Wysocki J, Salabat MR, Cokic I, Ye M, LaPointe MS, Batlle D (2005) Angiotensin II increases H+-ATPase B1 subunit expression in medullary collecting ducts. Hypertension 45:818–823

    Article  CAS  PubMed  Google Scholar 

  34. Motta G, Rojkjaer R, Hasan AA, Cines DB, Schmaier AH (1998) High molecular weight kininogen regulates prekallikrein assembly and activation on endothelial cells: a novel mechanism for contact activation. Blood 91:516–528

    CAS  PubMed  Google Scholar 

  35. Rojkjaer R, Schmaier AH (1999) Activation of the plasma kallikrein/kinin system on endothelial cell membranes. Immunopharmacology 43:109–114

    Article  CAS  PubMed  Google Scholar 

  36. Gurley SB, Allred A, Le TH, Griffiths R, Mao L, Philip N, Haystead TA, Donoghue M, Breitbart RE, Acton SL et al (2006) Altered blood pressure responses and normal cardiac phenotype in ACE2-null mice. J Clin Invest 116:2218–2225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Komlosi P, Fuson AL, Fintha A, Peti-Peterdi J, Rosivall L, Warnock DG, Bell PD (2003) Angiotensin I conversion to angiotensin II stimulates cortical collecting duct sodium transport. Hypertension 42:195–199

    Article  CAS  PubMed  Google Scholar 

  38. Peti-Peterdi J, Warnock DG, Bell PD (2002) Angiotensin II directly stimulates ENaC activity in the cortical collecting duct via AT(1) receptors. J Am Soc Nephrol 13:1131–1135

    Article  CAS  PubMed  Google Scholar 

  39. Ramkumar N, Ying J, Stuart D, Kohan DE (2013) Overexpression of renin in the collecting duct causes elevated blood pressure. Am J Hypertens 26:965–972

    Article  CAS  PubMed  Google Scholar 

  40. Shimkets RA, Warnock DG, Bositis CM, Nelson-Williams C, Hansson JH, Schambelan M, Gill JR Jr, Ulick S, Milora RV, Findling JW et al (1994) Liddle’s syndrome: heritable human hypertension caused by mutations in the beta subunit of the epithelial sodium channel. Cell 79:407–414

    Article  CAS  PubMed  Google Scholar 

  41. Warnock DG (2001) Liddle syndrome: genetics and mechanisms of Na+ channel defects. Am J Med Sci 322:302–307

    Article  CAS  PubMed  Google Scholar 

  42. Kumamoto K, Stewart TA, Johnson AR, Erdos EG (1981) Prolylcarboxypeptidase (angiotensinase C) in human lung and cultured cells. J Clin Invest 67:210–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jeong JK, Szabo G, Raso GM, Meli R, Diano S (2012) Deletion of prolyl carboxypeptidase attenuates the metabolic effects of diet-induced obesity. Am J Physiol Endocrinol Metab 302:E1502–E1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kuo JJ, Silva AA, Hall JE (2003) Hypothalamic melanocortin receptors and chronic regulation of arterial pressure and renal function. Hypertension 41:768–774

    Article  CAS  PubMed  Google Scholar 

  45. Greenfield JR, Miller JW, Keogh JM, Henning E, Satterwhite JH, Cameron GS, Astruc B, Mayer JP, Brage S, See TC et al (2009) Modulation of blood pressure by central melanocortinergic pathways. N Engl J Med 360:44–52

    Article  CAS  PubMed  Google Scholar 

  46. Tan F, Morris PW, Skidgel RA, Erdos EG (1993) Sequencing and cloning of human prolylcarboxypeptidase (angiotensinase C). Similarity to both serine carboxypeptidase and prolylendopeptidase families. J Biol Chem 268:16631–16638

    CAS  PubMed  Google Scholar 

  47. Wysocki J, Ye M, Batlle D (2015) Plasma and kidney angiotensin peptides: importance of the aminopeptidase a/angiotensin III axis. Am J Hypertens 28:1418–1426

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kehoe K, Van Elzen R, Verkerk R, Sim Y, Van der Veken P, Lambeir AM, De Meester I (2016) Prolyl carboxypeptidase purified from human placenta: its characterization and identification as an apelin-cleaving enzyme. Biochim Biophys Acta 1864:1481–1488

    Article  CAS  PubMed  Google Scholar 

  49. Tanco S, Lorenzo J, Garcia-Pardo J, Degroeve S, Martens L, Aviles FX, Gevaert K, Van Damme P (2013) Proteome-derived peptide libraries to study the substrate specificity profiles of carboxypeptidases. Mol Cell Proteomics 12:2096–2110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. O’Donoghue AJ, Eroy-Reveles AA, Knudsen GM, Ingram J, Zhou M, Statnekov JB, Greninger AL, Hostetter DR, Qu G, Maltby DA et al (2012) Global identification of peptidase specificity by multiplex substrate profiling. Nat Methods 9:1095–1100

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sparks MA, Stegbauer J, Chen D, Vivekanandan-Giri A, Pennathur S, Crowley SD, Gurley SB, Coffman TM (2014) Abstract 424: cardiac hypertrophy in angiotensin ii-dependent hypertension: dominant effect of blood pressure. Hypertension 64:A424

    Google Scholar 

  52. Cacciapuoti F (2011) Molecular mechanisms of left ventricular hypertrophy (LVH) in systemic hypertension (SH)-possible therapeutic perspectives. J Am Soc Hypertens 5:449–455

    Article  CAS  PubMed  Google Scholar 

  53. Paulis L, Foulquier S, Namsolleck P, Recarti C, Steckelings UM, Unger T (2016) Combined angiotensin receptor modulation in the management of cardio-metabolic disorders. Drugs 76:1–12

    Article  CAS  PubMed  Google Scholar 

  54. Iwata M, Cowling RT, Gurantz D, Moore C, Zhang S, Yuan JX, Greenberg BH (2005) Angiotensin-(1-7) binds to specific receptors on cardiac fibroblasts to initiate antifibrotic and antitrophic effects. Am J Physiol Heart Circ Physiol 289:H2356–H2363

    Article  CAS  PubMed  Google Scholar 

  55. Grobe JL, Mecca AP, Mao H, Katovich MJ (2006) Chronic angiotensin-(1-7) prevents cardiac fibrosis in DOCA-salt model of hypertension. Am J Physiol Heart Circ Physiol 290:H2417–H2423

    Article  CAS  PubMed  Google Scholar 

  56. Wysocki J, Wilsbacher L, Batlle D (2015) Angiotensins and the heart: is angiotensin-(1-7) cardioprotective? Hypertension 66:260–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Grobe JL, Mecca AP, Lingis M, Shenoy V, Bolton TA, Machado JM, Speth RC, Raizada MK, Katovich MJ (2007) Prevention of angiotensin II-induced cardiac remodeling by angiotensin-(1-7). Am J Physiol Heart Circ Physiol 292:H736–H742

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Lisa Wilsbacher for careful review of the manuscript and providing expert opinion on studies on the cardiac phenotype.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Batlle.

Ethics declarations

Funding

D.B. had grant support for these studies from the National Institute of Diabetes and Digestive and Kidney Diseases (DK 080089) and the Reuben Feinberg Foundation. C.M. and P.K.H. received funding from the German Academic Exchange Service (DAAD). A.H.S. has support from the NIH NHLBI HL0527719, HL112666, HL109561, and DOD BC150596P1.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Electronic supplementary material

ESM 1

(PDF 395 kb)

Supplemental Video S1

(AVI 5352 kb)

Supplemental Video S2

(AVI 5352 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maier, C., Schadock, I., Haber, P.K. et al. Prolylcarboxypeptidase deficiency is associated with increased blood pressure, glomerular lesions, and cardiac dysfunction independent of altered circulating and cardiac angiotensin II. J Mol Med 95, 473–486 (2017). https://doi.org/10.1007/s00109-017-1513-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-017-1513-9

Keywords

Navigation