Skip to main content

Advertisement

Log in

Circular RNAs: a small piece in the heart failure puzzle

  • Review
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Cardiovascular disease, specifically heart failure (HF), remains a significant concern in the realm of healthcare, necessitating the development of new treatments and biomarkers. The RNA family consists of various subgroups, including microRNAs, PIWI-interacting RNAs (piRAN) and long non-coding RNAs, which have shown potential in advancing personalized healthcare for HF patients. Recent research suggests that circular RNAs, a lesser-known subgroup of RNAs, may offer a novel set of targets and biomarkers for HF. This review will discuss the biogenesis of circular RNAs, their unique characteristics relevant to HF, their role in heart function, and their potential use as biomarkers in the bloodstream. Furthermore, future research directions in this field will be outlined. The stability of exosomal circRNAs makes them suitable as biomarkers, pathogenic regulators, and potential treatments for cardiovascular diseases such as atherosclerosis, acute coronary syndrome, ischemia/reperfusion injury, HF, and peripheral artery disease. Herein, we summarized the role of circular RNAs and their exosomal forms in HF diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  • Abbate A et al (2006) Myocardial expression of survivin, an apoptosis inhibitor, in aging and heart failure. An experimental study in the spontaneously hypertensive rat. Int J Cardiol 111(3):371–376

    Article  PubMed  Google Scholar 

  • Altieri DC (2008) Survivin, cancer networks and pathway-directed drug discovery. Nat Rev Cancer 8(1):61–70

    Article  CAS  PubMed  Google Scholar 

  • Altieri DC (2010) Survivin and IAP proteins in cell-death mechanisms. Biochem J 430(2):199–205

    Article  CAS  PubMed  Google Scholar 

  • Aranda-Orgilles B et al (2016) MED12 regulates HSC-specific enhancers independently of mediator kinase activity to control hematopoiesis. Cell Stem Cell 19(6):784–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashton NW et al (2013) Human single-stranded DNA binding proteins are essential for maintaining genomic stability. BMC Mol Biol 14(1):1–20

    Article  Google Scholar 

  • Ashwal-Fluss R et al (2014) circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56(1):55–66

    Article  CAS  PubMed  Google Scholar 

  • Bansal N et al (2019) Strategies to prevent anthracycline-induced cardiotoxicity in cancer survivors. Cardio-Oncology 5:1–22

    Article  Google Scholar 

  • Baskin KK et al (2017) MED12 regulates a transcriptional network of calcium-handling genes in the heart. JCI Insight 2(14)

  • Bayoumi AS et al (2017) MicroRNA-532 protects the heart in acute myocardial infarction, and represses prss23, a positive regulator of endothelial-to-mesenchymal transition. Cardiovasc Res 113(13):1603–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bejarano L, Jordāo MJ, Joyce JA (2021) Therapeutic targeting of the tumor microenvironment. Cancer Discov 11(4):933–959

    Article  CAS  PubMed  Google Scholar 

  • Benjamin EJ et al (2017) Heart disease and stroke statistics—2017 update: a report from the American Heart Association. Circulation 135(10):e146–e603

    Article  PubMed  PubMed Central  Google Scholar 

  • Bernardo BC et al (2010) Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Ther 128(1):191–227

    Article  CAS  PubMed  Google Scholar 

  • Bhambhani V et al (2018) Predictors and outcomes of heart failure with mid-range ejection fraction. Eur J Heart Fail 20(4):651–659

    Article  CAS  PubMed  Google Scholar 

  • Boosani CS, Dhar K, Agrawal DK (2015) Down-regulation of hsa-miR-1264 contributes to DNMT1-mediated silencing of SOCS3. Mol Biol Rep 42(9):1365–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brauch KM et al (2009) Mutations in ribonucleic acid binding protein gene cause familial dilated cardiomyopathy. J Am Coll Cardiol 54(10):930–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brough D, Rothwell NJ (2007) Caspase-1-dependent processing of pro-interleukin-1β is cytosolic and precedes cell death. J Cell Sci 120(5):772–781

    Article  CAS  PubMed  Google Scholar 

  • Burridge PW et al (2016) Human induced pluripotent stem cell–derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nat Med 22(5):547–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Busa VF, Leung AK (2021) Thrown for a (stem) loop: How RNA structure impacts circular RNA regulation and function. Methods 196:56–67

    Article  CAS  PubMed  Google Scholar 

  • Cardiovascular Disease and Risk Management (2021) Standards of Medical Care in Diabetes-2021. Diab Care 44(Suppl 1): S125-s150

  • Chandrasekera DN et al (2020) Upregulation of microRNA-532 enhances cardiomyocyte apoptosis in the diabetic heart. Apoptosis 25:388–399

    Article  CAS  PubMed  Google Scholar 

  • Chen C et al (2020b) The Circular RNA CDR1as Regulates the Proliferation and Apoptosis of Human Cardiomyocytes Through the miR-135a/HMOX1 and miR-135b/HMOX1 Axes. Genet Test Mol Biomarkers 24(9):537–548

    Article  CAS  PubMed  Google Scholar 

  • Chen C-K et al (2021) Structured elements drive extensive circular RNA translation. Mol Cell 81(20):4300–4318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen D et al (2022a) HMGCS2 silencing attenuates high glucose-induced in vitro diabetic cardiomyopathy by increasing cell viability, and inhibiting apoptosis, inflammation, and oxidative stress. Bioengineered 13(5):11417–11429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y et al (2020a) Distinct types of cell death and the implication in diabetic cardiomyopathy. Front Pharmacol 11:42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y et al (2022b) Identification of circular RNAs in cardiac hypertrophy and cardiac fibrosis. Front Pharmacol 13:940768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z et al (2018) MiR-33 promotes myocardial fibrosis by inhibiting MMP16 and stimulating p38 MAPK signaling. Oncotarget 9(31):22047

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng S et al (2010) Correlates of echocardiographic indices of cardiac remodeling over the adult life course: longitudinal observations from the Framingham Heart Study. Circulation 122(6):570–578

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng Y et al (2023) Central role of cardiac fibroblasts in myocardial fibrosis of diabetic cardiomyopathy. Front Endocrinol (Lausanne) 14:1162754

    Article  PubMed  Google Scholar 

  • Crone SA et al (2002) ErbB2 is essential in the prevention of dilated cardiomyopathy. Nat Med 8(5):459–465

    Article  CAS  PubMed  Google Scholar 

  • Cui M et al (2022) A narrative review of the research status of exosomes in cardiovascular disease. Ann Palliat Med 11(1):363–377

    Article  PubMed  Google Scholar 

  • Dai D-F et al (2011) Mitochondrial oxidative stress mediates angiotensin II–induced cardiac hypertrophy and Gαq overexpression–induced heart failure. Circ Res 108(7):837–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dannenberg L et al (2021) Cellular mechanisms and recommended drug-based therapeutic options in diabetic cardiomyopathy. Pharmacol Ther 228:107920

    Article  CAS  PubMed  Google Scholar 

  • Del Re DP et al (2014) Mst1 promotes cardiac myocyte apoptosis through phosphorylation and inhibition of Bcl-xL. Mol Cell 54(4):639–650

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng Y et al (2019) Circ-HIPK3 Strengthens the Effects of Adrenaline in Heart Failure by MiR-17-3p - ADCY6 Axis. Int J Biol Sci 15(11):2484–2496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dohi T et al (2004) An IAP-IAP complex inhibits apoptosis. J Biol Chem 279(33):34087–34090

    Article  CAS  PubMed  Google Scholar 

  • Dou YQ et al (2020) Smooth muscle SIRT1 reprograms endothelial cells to suppress angiogenesis after ischemia. Theranostics 10(3):1197–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du WW et al (2021) A neuroligin isoform translated by circNlgn contributes to cardiac remodeling. Circ Res 129(5):568–582

    Article  CAS  PubMed  Google Scholar 

  • Dunlay SM et al (2012) Longitudinal changes in ejection fraction in heart failure patients with preserved and reduced ejection fraction. Circ Heart Fail 5(6):720–726

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang ZY, Prins JB, Marwick TH (2004) Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr Rev 25(4):543–567

    Article  CAS  PubMed  Google Scholar 

  • Feng, W. and S. Han, lncRNA ADAMTS9-AS1/circFN1 Competitively Binds to miR-206 to Elevate the Expression of ACTB, Thus Inducing Hypertrophic Cardiomyopathy. Oxidative Medicine and Cellular Longevity. 2022.

  • Feng Y et al (2021) Knockdown circ_0040414 inhibits inflammation, apoptosis and promotes the proliferation of cardiomyocytes via miR-186-5p/PTEN/AKT axis in chronic heart failure. Cell Biol Int 45(11):2304–2315

    Article  CAS  PubMed  Google Scholar 

  • Filippello A et al (2013) Identification of nuclear retention domains in the RBM20 protein. FEBS Lett 587(18):2989–2995

    Article  CAS  PubMed  Google Scholar 

  • Franchi L et al (2009) The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol 10(3):241–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frangogiannis NG (2019a) Cardiac fibrosis: cell biological mechanisms, molecular pathways and therapeutic opportunities. Mol Asp Med 65:70–99

    Article  CAS  Google Scholar 

  • Frangogiannis NG (2019b) The extracellular matrix in ischemic and nonischemic heart failure. Circ Res 125(1):117–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • French PA (2009) Platelet functions beyond hemostasis, antiplatelet therapies in high-risk patient subgroups: the fourth annual platelet colloquium. J Thromb Thrombolysis 28(2):252–254

    Article  PubMed  Google Scholar 

  • Frey N, Olson E (2003) Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 65(1):45–79

    Article  CAS  PubMed  Google Scholar 

  • Friehs I, del Nido PJ (2003) Increased susceptibility of hypertrophied hearts to ischemic injury. Ann Thorac Surg 75(2):S678–S684

    Article  PubMed  Google Scholar 

  • Fu L et al (2022) CircularRNA circ_0071269 knockdown protects against from diabetic cardiomyopathy injury by microRNA-145/gasdermin A axis. Bioengineered 13(2):2398–2411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuda S et al (2004) Angiogenic signal triggered by ischemic stress induces myocardial repair in rat during chronic infarction. J Mol Cell Cardiol 36(4):547–559

    Article  CAS  PubMed  Google Scholar 

  • Gao J et al (2018) Downregulation of GSDMD attenuates tumor proliferation via the intrinsic mitochondrial apoptotic pathway and inhibition of EGFR/Akt signaling and predicts a good prognosis in non-small cell lung cancer. Oncol Rep 40(4):1971–1984

    CAS  PubMed  PubMed Central  Google Scholar 

  • García-Rivello H et al (2005) Dilated cardiomyopathy in Erb-b4-deficient ventricular muscle. Am J Phys Heart Circ Phys 289(3):H1153–H1160

    Google Scholar 

  • Ge X et al (2019) Circular RNA expression alterations in extracellular vesicles isolated from murine heart post ischemia/reperfusion injury. Int J Cardiol 296:136–140

    Article  PubMed  Google Scholar 

  • Geiss GK et al (2008) Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat Biotechnol 26(3):317–325

    Article  CAS  PubMed  Google Scholar 

  • Geng H-H et al (2016) The circular RNA Cdr1as promotes myocardial infarction by mediating the regulation of miR-7a on its target genes expression. PLoS One 11(3):e0151753

    Article  PubMed  PubMed Central  Google Scholar 

  • George AK et al (2019) Circular RNAs constitute an inherent gene regulatory axis in the mammalian eye and brain. Can J Physiol Pharmacol 97(6):463–472

    Article  CAS  PubMed  Google Scholar 

  • Giugliano D et al (2020) Relationship between improvement of glycaemic control and reduction of major cardiovascular events in 15 cardiovascular outcome trials: A meta-analysis with meta-regression. Diabetes Obes Metab 22(8):1397–1405

    Article  CAS  PubMed  Google Scholar 

  • Grabowski K et al (2022) Cpxm2 as a novel candidate for cardiac hypertrophy and failure in hypertension. Hypertens Res 45(2):292–307

    Article  CAS  PubMed  Google Scholar 

  • Graham JM Jr (2013) and C.E. Schwartz, MED12 related disorders. Am J Med Genet A 161(11):2734–2740

    Article  CAS  Google Scholar 

  • Griesing S et al (2017) Thyroid transcription factor-1-regulated microRNA-532-5p targets KRAS and MKL2 oncogenes and induces apoptosis in lung adenocarcinoma cells. Cancer Sci 108(7):1394–1404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grossman W, Jones D, McLaurin L (1975) Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest 56(1):56–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu Y et al (2021) Circular RNA circIPO11 drives self-renewal of liver cancer initiating cells via Hedgehog signaling. Mol Cancer 20(1):1–20

    Article  Google Scholar 

  • Guo W et al (2012) RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing. Nat Med 18(5):766–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta MK et al (2021) Cardiac expression of microRNA-7 is associated with adverse cardiac remodeling. Sci Rep 11(1):22018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haas J et al (2015) Atlas of the clinical genetics of human dilated cardiomyopathy. Eur Heart J 36(18):1123–1135

    Article  CAS  PubMed  Google Scholar 

  • Hamo CE et al (2016) Cancer therapy–related cardiac dysfunction and heart failure: part 2: prevention, treatment, guidelines, and future directions. Circ Heart Fail 9(2):e002843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han B, Chao J, Yao H (2018) Circular RNA and its mechanisms in disease: from the bench to the clinic. Pharmacol Ther 187:31–44

    Article  CAS  PubMed  Google Scholar 

  • Han D et al (2020a) The Tumor-Suppressive Human Circular RNA CircITCH Sponges miR-330-5p to Ameliorate Doxorubicin-Induced Cardiotoxicity Through Upregulating SIRT6, Survivin, and SERCA2a. Circ Res 127(4):e108–e125

    Article  CAS  PubMed  Google Scholar 

  • Han J et al (2020b) Circular RNA-Expression profiling reveals a potential role of Hsa_circ_0097435 in heart failure via sponging multiple MicroRNAs. Front Genet 11:212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen TB et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–388

    Article  CAS  PubMed  Google Scholar 

  • He S et al (2023) Genome-wide screening for circRNAs in epicardial adipose tissue of heart failure patients with preserved ejection fraction. Am J Transl Res 15(7):4610–4619

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herman DS et al (2012) Truncations of titin causing dilated cardiomyopathy. N Engl J Med 366(7):619–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez, A.R.V., ERK5 as a Metabolic Regulator in the Heart. 2019: The University of Manchester (United Kingdom).

  • Hershberger RE, Hedges DJ, Morales A (2013) Dilated cardiomyopathy: the complexity of a diverse genetic architecture. Nat Rev Cardiol 10(9):531–547

    Article  CAS  PubMed  Google Scholar 

  • Hinshaw DC, Shevde LA (2019) The tumor microenvironment innately modulates cancer progression. Cancer Res 79(18):4557–4566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffman WH et al (2002) Transcriptional repression of the anti-apoptotic survivin gene by wild type p53. J Biol Chem 277(5):3247–3257

    Article  CAS  PubMed  Google Scholar 

  • Ho-Xuan H et al (2020) Comprehensive analysis of translation from overexpressed circular RNAs reveals pervasive translation from linear transcripts. Nucleic Acids Res 48(18):10368–10382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu X et al (2022) Exosomal circular RNAs: Biogenesis, effect, and application in cardiovascular diseases. Front Cell Dev Biol 10:948256

    Article  PubMed  PubMed Central  Google Scholar 

  • Ibrahim A, Marbán E (2016) Exosomes: fundamental biology and roles in cardiovascular physiology. Annu Rev Physiol 78:67–83

    Article  CAS  PubMed  Google Scholar 

  • Ikeda S et al (2019) Hippo deficiency leads to cardiac dysfunction accompanied by cardiomyocyte dedifferentiation during pressure overload. Circ Res 124(2):292–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanov A et al (2015) Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep 10(2):170–177

    Article  CAS  PubMed  Google Scholar 

  • Jakobi T et al (2020) Deep characterization of circular RNAs from human cardiovascular cell models and cardiac tissue. Cells 9(7):1616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeck WR, Sharpless NE (2014) Detecting and characterizing circular RNAs. Nat Biotechnol 32(5):453–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji X et al (2020) MicroRNA-31-5p attenuates doxorubicin-induced cardiotoxicity via quaking and circular RNA Pan3. J Mol Cell Cardiol 140:56–67

    Article  CAS  PubMed  Google Scholar 

  • Jia G, Hill MA, Sowers JR (2018) Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circ Res 122(4):624–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang HL et al (2016) SSBP1 Suppresses TGFβ-Driven Epithelial-to-Mesenchymal Transition and Metastasis in Triple-Negative Breast Cancer by Regulating Mitochondrial Retrograde Signaling. Cancer Res 76(4):952–964

    Article  CAS  PubMed  Google Scholar 

  • Jiang J et al (2022) Circular RNA circHIPK3 is downregulated in diabetic cardiomyopathy and overexpression of circHIPK3 suppresses PTEN to protect cardiomyocytes from high glucose-induced cell apoptosis. Bioengineered 13(3):6272–6279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joffre C et al (2015) The pro-apoptotic STK38 kinase is a new Beclin1 partner positively regulating autophagy. Curr Biol 25(19):2479–2492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaga S et al (2006) Glycogen synthase kinase-3beta/beta-catenin promotes angiogenic and anti-apoptotic signaling through the induction of VEGF, Bcl-2 and survivin expression in rat ischemic preconditioned myocardium. J Mol Cell Cardiol 40(1):138–147

    Article  CAS  PubMed  Google Scholar 

  • Kagey MH et al (2010) Mediator and cohesin connect gene expression and chromatin architecture. Nature 467(7314):430–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur P et al (2018) Single-molecule DREEM imaging reveals DNA wrapping around human mitochondrial single-stranded DNA binding protein. Nucleic Acids Res 46(21):11287–11302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kayagaki N et al (2015) Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526(7575):666–671

    Article  CAS  PubMed  Google Scholar 

  • Kayvanpour E et al (2017) Genotype-phenotype associations in dilated cardiomyopathy: meta-analysis on more than 8000 individuals. Clin Res Cardiol 106:127–139

    Article  CAS  PubMed  Google Scholar 

  • Keating MT, Sanguinetti MC (2001) Molecular and cellular mechanisms of cardiac arrhythmias. Cell 104(4):569–580

    Article  CAS  PubMed  Google Scholar 

  • Kehat I, Molkentin JD (2010) Molecular pathways underlying cardiac remodeling during pathophysiological stimulation. Circulation 122(25):2727–2735

    Article  PubMed  Google Scholar 

  • Khan MA et al (2016) RBM20 regulates circular RNA production from the titin gene. Circ Res 119(9):996–1003

    Article  CAS  PubMed  Google Scholar 

  • Kitago M et al (2009) Regulation of RUNX3 Tumor Suppressor Gene Expression in Cutaneous Melanoma. Clin Cancer Res 15(9):2988–2994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kokot KE et al (2022) Reduction of A-to-I RNA editing in the failing human heart regulates formation of circular RNAs. Basic Res Cardiol 117(1):32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolwicz SC Jr, Purohit S, Tian R (2013) Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ Res 113(5):603–616

    Article  CAS  PubMed  Google Scholar 

  • Komanduri S et al (2017) Prevalence and risk factors of heart failure in the USA: NHANES 2013–2014 epidemiological follow-up study. J Community Hosp Intern Med Perspect 7(1):15–20

    Article  PubMed  PubMed Central  Google Scholar 

  • Kostin S et al (2003) Myocytes die by multiple mechanisms in failing human hearts. Circ Res 92(7):715–724

    Article  CAS  PubMed  Google Scholar 

  • Lee BS et al (2013) Protective effect of survivin in Doxorubicin-induced cell death in h9c2 cardiac myocytes. Korean Circ J 43(6):400–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee BS et al (2015) Insulin protects cardiac myocytes from doxorubicin toxicity by Sp1-mediated transactivation of survivin. PLoS One 10(8):e0135438

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee PJ et al (2014) Survivin gene therapy attenuates left ventricular systolic dysfunction in doxorubicin cardiomyopathy by reducing apoptosis and fibrosis. Cardiovasc Res 101(3):423–433

    Article  CAS  PubMed  Google Scholar 

  • Levkau B et al (2008) Survivin determines cardiac function by controlling total cardiomyocyte number. Circulation 117(12):1583–1593

    Article  CAS  PubMed  Google Scholar 

  • Li D et al (2010) Identification of novel mutations in RBM20 in patients with dilated cardiomyopathy. Clin Transl Sci 3(3):90–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H et al (2020b) Circular RNA circRNA_000203 aggravates cardiac hypertrophy via suppressing miR-26b-5p and miR-140-3p binding to Gata4. Cardiovasc Res 116(7):1323–1334

    Article  CAS  PubMed  Google Scholar 

  • Li J, Li X, Qiao X (2021) Analysis of circRNA regulatory network in myocardial tissue of type 1 diabetic mice. Cell Mol Biol 67(3):201–203

    Article  PubMed  Google Scholar 

  • Li J et al (2020a) Circular RNAs in cancer: biogenesis, function, and clinical significance. Trends Cancer 6(4):319–336

    Article  CAS  PubMed  Google Scholar 

  • Li J et al (2022b) The potential role of exosomal circRNAs in the tumor microenvironment: insights into cancer diagnosis and therapy. Theranostics 12(1):87–104

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X et al (2022a) Differential mRNA Expression and Circular RNA-Based Competitive Endogenous RNA Networks in the Three Stages of Heart Failure in Transverse Aortic Constriction Mice. Front Physiol 13:777284

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Z et al (2015) Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 22(3):256–264

    Article  PubMed  Google Scholar 

  • Liang XH et al (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402(6762):672–676

    Article  CAS  PubMed  Google Scholar 

  • Lim TB et al (2019) Targeting the highly abundant circular RNA circSlc8a1 in cardiomyocytes attenuates pressure overload induced hypertrophy. Cardiovasc Res 115(14):1998–2007

    Article  CAS  PubMed  Google Scholar 

  • Lin J et al (2016) Mst1 inhibits CMECs autophagy and participates in the development of diabetic coronary microvascular dysfunction. Sci Rep 6(1):34199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin S et al (2015) The metabolic effects of traditional Chinese medication Qiliqiangxin on H9C2 cardiomyocytes. Cell Physiol Biochem 37(6):2246–2256

    Article  CAS  PubMed  Google Scholar 

  • Lin Z et al (2021) Analysis of changes in circular RNA expression and construction of ceRNA networks in human dilated cardiomyopathy. J Cell Mol Med 25(5):2572–2583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J et al (2017) Circles reshaping the RNA world: from waste to treasure. Mol Cancer 16(1):1–12

    Article  Google Scholar 

  • Liu X et al (2021b) CircMYH9 drives colorectal cancer growth by regulating serine metabolism and redox homeostasis in a p53-dependent manner. Mol Cancer 20(1):1–19

    Article  CAS  Google Scholar 

  • Liu Z et al (2021a) CircRNA-DOPEY2 enhances the chemosensitivity of esophageal cancer cells by inhibiting CPEB4-mediated Mcl-1 translation. J Exp Clin Cancer Res 40:1–17

    Article  CAS  Google Scholar 

  • Lloyd-Jones DM et al (2002) Lifetime risk for developing congestive heart failure: the Framingham Heart Study. Circulation 106(24):3068–3072

    Article  PubMed  Google Scholar 

  • Lu D et al (2022) A circular RNA derived from the insulin receptor locus protects against doxorubicin-induced cardiotoxicity. Eur Heart J 43(42):4496–4511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo B et al (2014) NLRP3 gene silencing ameliorates diabetic cardiomyopathy in a type 2 diabetes rat model. PLoS One 9(8):e104771

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo B et al (2017) NLRP3 inflammasome as a molecular marker in diabetic cardiomyopathy. Front Physiol 8:519

    Article  PubMed  PubMed Central  Google Scholar 

  • Maejima Y et al (2013) Mst1 inhibits autophagy by promoting the interaction between Beclin1 and Bcl-2. Nat Med 19(11):1478–1488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maejima Y et al (2022) The role of the Hippo pathway in autophagy in the heart. Cardiovasc Res 118(17):3320–3330

    Article  CAS  PubMed Central  Google Scholar 

  • Maggioni AP et al (2013) EURObservational research programme: regional differences and 1-year follow-up results of the Heart Failure Pilot Survey (ESC-HF Pilot). Eur J Heart Fail 15(7):808–817

    Article  PubMed  Google Scholar 

  • Mazurek JA, Jessup M (2015) Understanding heart failure. Card Electrophysiol Clin 7(4):557–575

    Article  PubMed  Google Scholar 

  • McMurray J et al (2012) ESC Committee for Practice Guidelines. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J 33(14):1787–1847

    Article  PubMed  Google Scholar 

  • Meijers WC, de Boer RA (2019) Common risk factors for heart failure and cancer. Cardiovasc Res 115(5):844–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mester-Tonczar J et al (2020) Association between Circular RNA CDR1as and Post-Infarction Cardiac Function in Pig Ischemic Heart Failure: Influence of the Anti-Fibrotic Natural Compounds Bufalin and Lycorine. Biomolecules 10(8):1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao Y-L et al (2018) Mediator complex component MED13 regulates zygotic genome activation and is required for postimplantation development in the mouse. Biol Reprod 98(4):449–464

    Article  PubMed  PubMed Central  Google Scholar 

  • Miralles Fusté J et al (2014) In vivo occupancy of mitochondrial single-stranded DNA binding protein supports the strand displacement mode of DNA replication. PLoS Genet 10(12):e1004832

    Article  PubMed  PubMed Central  Google Scholar 

  • Momparler RL et al (1976) Effect of adriamycin on DNA, RNA, and protein synthesis in cell-free systems and intact cells. Cancer Res 36(8):2891–2895

    CAS  PubMed  Google Scholar 

  • Morin JA et al (2017) DNA synthesis determines the binding mode of the human mitochondrial single-stranded DNA-binding protein. Nucleic Acids Res 45(12):7237–7248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naarmann-de Vries IS et al (2022) Targeted Analysis of circRNA Expression in Patient Samples by Lexo-circSeq. Front Mol Biosci 9:875805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagiub M, Nixon JV, Kontos MC (2018) Ability of nonstrain diastolic parameters to predict doxorubicin-induced cardiomyopathy: a systematic review with meta-analysis. Cardiol Rev 26(1):29–34

    Article  PubMed  Google Scholar 

  • Nakamura M, Sadoshima J (2018) Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol 15(7):387–407

    Article  CAS  PubMed  Google Scholar 

  • Nisar S et al (2021) Insights into the role of CircRNAs: biogenesis, characterization, functional, and clinical impact in human malignancies. Front Cell Dev Biol 9:617281

    Article  PubMed  PubMed Central  Google Scholar 

  • Odashima M et al (2007) Inhibition of endogenous Mst1 prevents apoptosis and cardiac dysfunction without affecting cardiac hypertrophy after myocardial infarction. Circ Res 100(9):1344–1352

    Article  CAS  PubMed  Google Scholar 

  • Pan J et al (2021) Circ_nuclear factor I X (circNfix) attenuates pressure overload-induced cardiac hypertrophy via regulating miR-145-5p/ATF3 axis. Bioengineered 12(1):5373–5385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang B et al (2013) Drug-induced histone eviction from open chromatin contributes to the chemotherapeutic effects of doxorubicin. Nat Commun 4(1):1908

    Article  PubMed  Google Scholar 

  • Paquet N et al (2015) hSSB1 (NABP2/OBFC2B) is required for the repair of 8-oxo-guanine by the hOGG1-mediated base excision repair pathway. Nucleic Acids Res 43(18):8817–8829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearson-Stuttard J et al (2021) Trends in predominant causes of death in individuals with and without diabetes in England from 2001 to 2018: an epidemiological analysis of linked primary care records. Lancet Diabetes Endocrinol 9(3):165–173

    Article  PubMed  PubMed Central  Google Scholar 

  • Piccolo S, Dupont S, Cordenonsi M (2014) The biology of YAP/TAZ: hippo signaling and beyond. Physiol Rev 94(4):1287–1312

    Article  CAS  PubMed  Google Scholar 

  • Pinto YM et al (2016) Proposal for a revised definition of dilated cardiomyopathy, hypokinetic non-dilated cardiomyopathy, and its implications for clinical practice: a position statement of the ESC working group on myocardial and pericardial diseases. Eur Heart J 37(23):1850–1858

    Article  PubMed  Google Scholar 

  • Pizato N et al (1952) Omega-3 docosahexaenoic acid induces pyroptosis cell death in triplenegative breast cancer cells. Sci Rep 8(1):2018

    Google Scholar 

  • Ponikowski P, ESC Scientific Document Group et al (2016) ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 37(27):2129–2200

    Article  PubMed  Google Scholar 

  • Preußer C et al (2018) Selective release of circRNAs in platelet-derived extracellular vesicles. J Extracell Vesicles 7(1):1424473

    Article  PubMed  PubMed Central  Google Scholar 

  • Qian L et al (2012) In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 485(7400):593–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu Y et al (2021) CircTLK1 modulates sepsis-induced cardiomyocyte apoptosis via enhancing PARP1/HMGB1 axis-mediated mitochondrial DNA damage by sponging miR-17-5p. J Cell Mol Med 25(17):8244–8260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rawal S, Manning, Katare R (2014) Cardiovascular microRNAs: as modulators and diagnostic biomarkers of diabetic heart disease. Cardiovasc Diabetol 13(1):44

    Article  PubMed  PubMed Central  Google Scholar 

  • Read DE et al (2014) miRNA signature of unfolded protein response in H9c2 rat cardiomyoblasts. Cell Biosci 4:1–10

    Article  Google Scholar 

  • Reddy YN et al (2018) A simple, evidence-based approach to help guide diagnosis of heart failure with preserved ejection fraction. Circulation 138(9):861–870

    Article  PubMed  PubMed Central  Google Scholar 

  • Rees OL, Wheen, Anderson LJ (2023) Updates in heart failure. Clin Med (Lond) 23(5):432–436

    Article  PubMed  Google Scholar 

  • Refaat MM et al (2012) Genetic variation in the alternative splicing regulator RBM20 is associated with dilated cardiomyopathy. Heart Rhythm 9(3):390–396

    Article  PubMed  Google Scholar 

  • Rogakou EP et al (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273(10):5858–5868

    Article  CAS  PubMed  Google Scholar 

  • Roger VL et al (2011) Heart disease and stroke statistics—2011 update: a report from the American Heart Association. Circulation 123(4):e18–e209

    Article  PubMed  Google Scholar 

  • Saeki N et al (2007) GASDERMIN, suppressed frequently in gastric cancer, is a target of LMO1 in TGF-β-dependent apoptotic signalling. Oncogene 26(45):6488–6498

    Article  CAS  PubMed  Google Scholar 

  • Sahoo S et al (2021) Therapeutic and diagnostic translation of extracellular vesicles in cardiovascular diseases: roadmap to the clinic. Circulation 143(14):1426–1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saikishore R et al (2020) The circular RNA-miRNA axis: a special RNA signature regulatory transcriptome as a potential biomarker for OSCC. Mol Ther Nucleic Acids 22:352–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salzman J (2016) Circular RNA expression: its potential regulation and function. Trends Genet 32(5):309–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savarese G, Lund LH (2017) Global public health burden of heart failure. Card Fail Rev 3(1):7

    Article  PubMed  PubMed Central  Google Scholar 

  • Savarese G et al (2022) Global burden of heart failure: a comprehensive and updated review of epidemiology. Cardiovasc Res 118(17):3272–3287

    Article  CAS  Google Scholar 

  • Schroder K, Zhou R, Tschopp J (2010) The NLRP3 inflammasome: a sensor for metabolic danger? Science 327(5963):296–300

    Article  CAS  PubMed  Google Scholar 

  • Schwinger RHG (2021) Pathophysiology of heart failure. Cardiovasc Diagn Ther 11(1):263–276

    Article  PubMed  PubMed Central  Google Scholar 

  • Segert J et al (2018) Mediator complex subunit Med12 regulates cardiac jelly development and AV valve formation in zebrafish. Prog Biophys Mol Biol 138:20–31

    Article  CAS  PubMed  Google Scholar 

  • Shang X et al (2020) Mst1 deletion reduces septic cardiomyopathy via activating Parkin-related mitophagy. J Cell Physiol 235(1):317–327

    Article  CAS  PubMed  Google Scholar 

  • Shao Y et al (2022) CircRNA CDR1as promotes cardiomyocyte apoptosis through activating hippo signaling pathway in diabetic cardiomyopathy. Eur J Pharmacol 922:174915

    Article  CAS  PubMed  Google Scholar 

  • Shen S et al (2021) circPDE4B prevents articular cartilage degeneration and promotes repair by acting as a scaffold for RIC8A and MID1. Ann Rheum Dis 80(9):1209–1219

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Gao W, Shao F (2017) Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci 42(4):245–254

    Article  CAS  PubMed  Google Scholar 

  • Shi J et al (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526(7575):660–665

    Article  CAS  PubMed  Google Scholar 

  • Shimizu I, Minamino T (2016) Physiological and pathological cardiac hypertrophy. J Mol Cell Cardiol 97:245–262

    Article  CAS  PubMed  Google Scholar 

  • Si X et al (2020) circRNA Hipk3 induces cardiac regeneration after myocardial infarction in mice by binding to Notch1 and miR-133a. Mol Ther Nucleic Acids 21:636–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smyth SS et al (2009) Platelet functions beyond hemostasis. J Thromb Haemost 7(11):1759–1766

    Article  CAS  PubMed  Google Scholar 

  • Song K et al (2012) Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 485(7400):599–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song X et al (2015) Loss of miR-532-5p in vitro promotes cell proliferation and metastasis by influencing CXCL2 expression in HCC. Am J Transl Res 7(11):2254–2261

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sonnenschein K et al (2019) Serum circular RNAs act as blood-based biomarkers for hypertrophic obstructive cardiomyopathy. Sci Rep 9(1):20350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stamm P et al (2021) Doxorubicin induces wide-spread transcriptional changes in the myocardium of hearts distinguishing between mice with preserved and impaired cardiac function. Life Sci 284:119879

    Article  CAS  PubMed  Google Scholar 

  • Su J et al (2023) Comprehensive analysis of the RNA transcriptome expression profiles and construction of the ceRNA network in heart failure patients with sacubitril/valsartan therapeutic heterogeneity after acute myocardial infarction. Eur J Pharmacol 944:175547

    Article  CAS  PubMed  Google Scholar 

  • Sun W et al (2020b) Differential Expression Profiles and Functional Prediction of Circular RNAs in Pediatric Dilated Cardiomyopathy. Front Mol Biosci 7:600170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y et al (2020a) Circular RNA expression profiles in plasma from patients with heart failure related to platelet activity. Biomolecules 10(2):187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tacar O, Sriamornsak, Dass CR (2013) Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol 65(2):157–170

    Article  CAS  PubMed  Google Scholar 

  • Tang X et al (2022) KLF2 regulates neutrophil activation and thrombosis in cardiac hypertrophy and heart failure progression. J Clin Invest 132(3)

  • Tian H-P et al (2018) Single-stranded DNA-binding protein 1 abrogates cardiac fibroblast proliferation and collagen expression induced by angiotensin II. Int Heart J 59(6):1398–1408

    Article  CAS  PubMed  Google Scholar 

  • Tong M et al (2019) Mitophagy is essential for maintaining cardiac function during high fat diet-induced diabetic cardiomyopathy. Circ Res 124(9):1360–1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Upshaw JN et al (2020) Comprehensive assessment of changes in left ventricular diastolic function with contemporary breast cancer therapy. JACC: Cardiovasc Imaging 13(1 Part 2):198–210

    PubMed  Google Scholar 

  • Valentim L et al (2006) Urocortin inhibits Beclin1-mediated autophagic cell death in cardiac myocytes exposed to ischaemia/reperfusion injury. J Mol Cell Cardiol 40(6):846–852

    Article  CAS  PubMed  Google Scholar 

  • van den Hoogenhof MM et al (2018) RBM20 mutations induce an arrhythmogenic dilated cardiomyopathy related to disturbed calcium handling. Circulation 138(13):1330–1342

    Article  PubMed  Google Scholar 

  • van Niel G et al (2011) The tetraspanin CD63 regulates ESCRT-independent and -dependent endosomal sorting during melanogenesis. Dev Cell 21(4):708–721

    Article  PubMed  PubMed Central  Google Scholar 

  • Verduci L et al (2021) CircRNAs: role in human diseases and potential use as biomarkers. Cell Death Dis 12(5):468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F et al (2016b) High Expression of miR-532-5p, a Tumor Suppressor, Leads to Better Prognosis in Ovarian Cancer Both In Vivo and In Vitro. Mol Cancer Ther 15(5):1123–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JX et al (2015) MicroRNA-532-3p regulates mitochondrial fission through targeting apoptosis repressor with caspase recruitment domain in doxorubicin cardiotoxicity. Cell Death Dis 6(3):e1677–e1677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang K et al (2016c) A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Eur Heart J 37(33):2602–2611

    Article  CAS  PubMed  Google Scholar 

  • Wang P et al (2019a) Activation of Aurora A kinase increases YAP stability via blockage of autophagy. Cell Death Dis 10(6):432

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang S et al (2018) Melatonin activates Parkin translocation and rescues the impaired mitophagy activity of diabetic cardiomyopathy through Mst1 inhibition. J Cell Mol Med 22(10):5132–5144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S et al (2021a) Circular RNAs in body fluids as cancer biomarkers: the new frontier of liquid biopsies. Mol Cancer 20(1):13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang T et al (2016a) Mst1 participates in the atherosclerosis progression through macrophage autophagy inhibition and macrophage apoptosis enhancement. J Mol Cell Cardiol 98:108–116

    Article  CAS  PubMed  Google Scholar 

  • Wang W et al (2021b) Involvement of circHIPK3 in the pathogenesis of diabetic cardiomyopathy in mice. Diabetologia 64(3):681–692

    Article  PubMed  Google Scholar 

  • Wang X (2021) M. Chen, and L. Fang, hsa_circ_0068631 promotes breast cancer progression through c-Myc by binding to EIF4A3. Mol Ther Nucleic Acids 26:122–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y et al (2019b) Exosomal circHIPK3 released from hypoxia-pretreated cardiomyocytes regulates oxidative damage in cardiac microvascular endothelial cells via the miR-29a/IGF-1 pathway. Oxidative Med Cell Longev 2019:7954657

    Article  Google Scholar 

  • Wang Y et al (2020) exosomal circhipk3 released from hypoxia-induced cardiomyocytes regulates cardiac angiogenesis after myocardial infarction. Oxidative Med Cell Longev 2020:8418407

    Google Scholar 

  • Wang Y et al (2023) A novel identified circular RNA, circSnap47, promotes heart failure progression via regulation of miR-223-3p/MAPK axis. Mol Cell Biochem 478(3):459–469

    Article  CAS  PubMed  Google Scholar 

  • Wang ZY, Liu XX, Deng YF (2022) Negative feedback of SNRK to circ-SNRK regulates cardiac function post-myocardial infarction. Cell Death Differ 29(4):709–721

    Article  PubMed  Google Scholar 

  • Wells QS et al (2013) Whole exome sequencing identifies a causal RBM20 mutation in a large pedigree with familial dilated cardiomyopathy. Circ Cardiovasc Genet 6(4):317–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen SY, Qadir J, Yang BB (2022) Circular RNA translation: novel protein isoforms and clinical significance. Trends Mol Med 28(5):405–420

    Article  CAS  PubMed  Google Scholar 

  • Wen Y et al (2021) circRNA-0006896-miR1264-DNMT1 axis plays an important role in carotid plaque destabilization by regulating the behavior of endothelial cells in atherosclerosis. Mol Med Rep 23(5):1–13

    Article  Google Scholar 

  • Wenningmann N et al (2019) Insights into doxorubicin-induced cardiotoxicity: molecular mechanisms, preventive strategies, and early monitoring. Mol Pharmacol 96(2):219–232

    Article  CAS  PubMed  Google Scholar 

  • Werfel S et al (2016) Characterization of circular RNAs in human, mouse and rat hearts. J Mol Cell Cardiol 98:103–107

    Article  CAS  PubMed  Google Scholar 

  • Whyte WA et al (2013) Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153(2):307–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wohlschlaeger J et al (2010) Cardiomyocyte survivin protein expression is associated with cell size and DNA content in the failing human heart and is reversibly regulated after ventricular unloading. J Heart Lung Transplant 29(11):1286–1292

    Article  PubMed  Google Scholar 

  • Wong LL et al (2015) Circulating microRNAs in heart failure with reduced and preserved left ventricular ejection fraction. Eur J Heart Fail 17(4):393–404

    Article  CAS  PubMed  Google Scholar 

  • Wu N et al (2022) Silencing mouse circular RNA circSlc8a1 by circular antisense cA-circSlc8a1 induces cardiac hepatopathy. Mol Ther 31(6):1688–1704

    Article  PubMed  Google Scholar 

  • Xu J et al (2020) CircRNA-SORE mediates sorafenib resistance in hepatocellular carcinoma by stabilizing YBX1. Signal Transduct Target Ther 5(1):298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J et al (2022) The circular RNA circNlgnmediates doxorubicin-inducedcardiac remodeling and fibrosis. Mol Ther Nucleic Acids 28:175–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto S et al (2003) Activation of Mst1 causes dilated cardiomyopathy by stimulating apoptosis without compensatory ventricular myocyte hypertrophy. J Clin Invest 111(10):1463–1474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan H et al (2022b) Downregulation of autophagy-related circular RNA (ACR) is correlated with poor survival of patients with chronic heart failure. Bioengineered 13(5):13141–13149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan M et al (2022a) Mitochondrial damage and activation of the cytosolic DNA sensor cGAS–STING pathway lead to cardiac pyroptosis and hypertrophy in diabetic cardiomyopathy mice. Cell Death Dis 8(1):258

    Article  CAS  Google Scholar 

  • Yang F et al (2018) Silencing long non-coding RNA Kcnq1ot1 alleviates pyroptosis and fibrosis in diabetic cardiomyopathy. Cell Death Dis 9(10):1000

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Y et al (2017) Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res 27(5):626–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y et al (2022) Implication of different ECG left ventricular hypertrophy in patients undergoing transcatheter aortic valve replacement. J Am Heart Assoc 11(4):e023647

    Article  PubMed  PubMed Central  Google Scholar 

  • Yao LL et al (2007) Survivin mediates the anti-apoptotic effect of delta-opioid receptor stimulation in cardiomyocytes. J Cell Sci 120(Pt 5):895–907

    Article  CAS  PubMed  Google Scholar 

  • Ye F et al (2019) circFBXW7 inhibits malignant progression by sponging miR-197-3p and encoding a 185-aa protein in triple-negative breast cancer. Mol Ther Nucleic Acids 18:88–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu T et al (2021) Circular RNA circ-TNPO3 suppresses metastasis of GC by acting as a protein decoy for IGF2BP3 to regulate the expression of MYC and SNAIL. Mol Ther Nucleic Acids 26:649–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu W et al (2019) Mst1 promotes cardiac ischemia–reperfusion injury by inhibiting the ERK-CREB pathway and repressing FUNDC1-mediated mitophagy. J Physiol Sci 69:113–127

    Article  CAS  PubMed  Google Scholar 

  • Yuan Q et al (2023) CircRNA DICAR as a novel endogenous regulator for diabetic cardiomyopathy and diabetic pyroptosis of cardiomyocytes. Signal Transduct Target Ther 8(1):99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yue E et al (2019) Anthocyanin is involved in the activation of pyroptosis in oral squamous cell carcinoma. Phytomedicine 56:286–294

    Article  CAS  PubMed  Google Scholar 

  • Zannad F (2018) Rising incidence of heart failure demands action. Lancet 391(10120):518–519

    Article  PubMed  Google Scholar 

  • Zeng Y et al (2017) A circular RNA binds to and activates AKT phosphorylation and nuclear localization reducing apoptosis and enhancing cardiac repair. Theranostics 7(16):3842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H et al (2018) Gypenosides improve diabetic cardiomyopathy by inhibiting ROS-mediated NLRP 3 inflammasome activation. J Cell Mol Med 22(9):4437–4448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang MX et al (2022) CircME1 promotes aerobic glycolysis and sunitinib resistance of clear cell renal cell carcinoma through cis-regulation of ME1. Oncogene 41(33):3979–3990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S et al (2012) Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med 18(11):1639–1642

    Article  PubMed  Google Scholar 

  • Zhang X et al (2013) A modified murine model for the study of reverse cardiac remodelling. Exp Clin Cardiol 18(2):e115

    PubMed  PubMed Central  Google Scholar 

  • Zhang X-O et al (2014) Complementary sequence-mediated exon circularization. Cell 159(1):134–147

    Article  CAS  PubMed  Google Scholar 

  • Zhao RT et al (2018) Circular ribonucleic acid expression alteration in exosomes from the brain extracellular space after traumatic brain injury in mice. J Neurotrauma 35(17):2056–2066

    Article  PubMed  Google Scholar 

  • Zheng H et al (2021) circSnx12 is involved in ferroptosis during heart failure by targeting miR-224-5. Front Cardiovasc Med 8:656093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou LY et al (2019) The circular RNA ACR attenuates myocardial ischemia/reperfusion injury by suppressing autophagy via modulation of the Pink1/ FAM65B pathway. Cell Death Differ 26(7):1299–1315

    Article  CAS  PubMed  Google Scholar 

  • Zhu M et al (2022) Changes in transcriptomic landscape in human end-stage heart failure with distinct etiology. Iscience 25(3):103935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y et al (2023) Circ-Ddx60 contributes to the antihypertrophic memory of exercise hypertrophic preconditioning. J Adv Res 46:113–121

    Article  CAS  PubMed  Google Scholar 

  • Zi M et al (2014) The mammalian Ste20-like kinase 2 (Mst2) modulates stress-induced cardiac hypertrophy. J Biol Chem 289(35):24275–24288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zile MR et al (2001) Cardiocyte cytoskeleton in patients with left ventricular pressure overload hypertrophy. J Am Coll Cardiol 37(4):1080–1084

    Article  CAS  PubMed  Google Scholar 

  • Zurek M et al (2020) Neuregulin-1 Induces Cardiac Hypertrophy and Impairs Cardiac Performance in Post–Myocardial Infarction Rats. Circulation 142(13):1308–1311

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

RE, DS, AR, and PG, and HM contributed in the conception, design and drafting of the manuscript. All authors approved the final version for submission.

Corresponding authors

Correspondence to Pouya Goleij or Hamed Mirzaei.

Ethics declarations

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eshraghi, R., Shafie, D., Raisi, A. et al. Circular RNAs: a small piece in the heart failure puzzle. Funct Integr Genomics 24, 102 (2024). https://doi.org/10.1007/s10142-024-01386-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10142-024-01386-z

Keywords

Navigation