Skip to main content

Advertisement

Log in

Toward the development of Ac/Ds transposon-mediated gene tagging system for functional genomics in oat (Avena sativa L.)

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Cultivated oat (Avena sativa L.) is an important cereal grown worldwide due to its multifunctional uses for animal feed and human food. Oat has lagged behind other cereals in the genetic and genomic studies attributed to its large and complex genomes. Transposon-based genome characterization has been utilized successfully for identifying and determining gene function in large genome cereals. To develop gene tagging and gene-editing resources for oat, maize Activator (Ac) and Dissociation (Ds) transposons were introduced into the oat genome using the biolistic delivery system. A total of 2035 oat calli were bombarded and twenty-four independent, stable transgenic events were obtained. Transformation frequencies were up to 19.0%, and 1.9% for bialaphos and hygromycin selection, respectively. Re-mobilization of the non-autonomous Ds element, by introducing Ac transposase source, led to a transposition frequency up to 16.8%. The properties of ten unique flanking sequences have been characterized to reveal the Ds-tagged sites in the oat genome. Genes at Ds insertion sites showed homology to gibberellin 20-oxidase 3, (1,3;1,4)-beta-D-glucan synthase, and aspartate kinase. This Ac/Ds transposon-based gene tagging system could facilitate and expedite functional genomic studies in oat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson JW, Siesel AE (1990) Hypocholesterolemic effects of oat products. New developments in dietary fiber. Springer, pp. 17–36

  • Anwar N, Ohta M, Yazawa T, Sato Y, Li C, Tagiri A et al (2018) miR172 downregulates the translation of cleistogamy 1 in barley. Ann Bot 122(2):251–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avena sativa OT3098 v1, PepsiCo, https://wheat.pw.usda.gov/GG3/graingenes_downloads/oat-ot3098-pepsico

  • Avena sativa v1.0, https://avenagenome.org/)

  • Ayliffe M, Pryor A (2009) Transposon-based activation tagging in cereals. Funct Plant Biol 36:915–921

    Article  CAS  PubMed  Google Scholar 

  • Ayliffe MA, Pallotta M, Langridge P, Pryor AJ (2007) A barley activation tagging system. Plant Mol Biol 64:329–347

    Article  CAS  PubMed  Google Scholar 

  • Bekele WA, Wight CP, Chao S, Howarth CJ, Tinker NA (2018) Haplotype-based genotyping-by-sequencing in oat genome research. Plant Biotechnol J 16:1452–1463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown RH, Bregitzer P (2011) A Ds insertional mutant of a barley miR172 gene results in indeterminate spikelet development. Crop Sci 51(4):1664–1672

    Article  CAS  Google Scholar 

  • Brown RH, Singh J, Singh S, Dahleen LS, Lemaux PG, Stein N, Mascher M, Bregitzer P (2015) Behavior of a modified Dissociation element in barley: a tool for genetic studies and for breeding transgenic barley. Mol Breeding 35:85

    Article  CAS  Google Scholar 

  • Butt MS, Tahir-Nadeem M, Khan MKI, Shabir R, Butt MS (2008) Oat: unique among the cereals. Eur J Nutr 47:68–79

    Article  CAS  PubMed  Google Scholar 

  • Cardinal M-J, Kaur R, Singh J (2016) Genetic transformation of Hordeum vulgare ssp. spontaneum for the development of a transposon-based insertional mutagenesis system. Mol Biotechnol 58:672–683

    Article  CAS  PubMed  Google Scholar 

  • Cho M-J, Jiang W, Lemaux PG (1998a) Transformation of recalcitrant barley cultivars through improvement of regenerability and decreased albinism. Plant Sci 138:229–244

    Article  CAS  Google Scholar 

  • Cho MJ, Zhang S, Lemaux PG (1998b) Transformation of shoot meristem tissues of oat using three different selectable markers. Vitro Cell Dev Biol P 34:340

  • Cho M-J, Jiang W, Lemaux PG (1999) High-frequency transformation of oat via microprojectile bombardment of seed-derived highly regenerative cultures. Plant Sci 148:9–17

    Article  CAS  Google Scholar 

  • Choi H-W, Lemaux PG, Cho M-J (2000) High frequency of cytogenetic aberration in transgenic oat (Avena sativa L.) plants. Plant Sci 156:85–94

    Article  CAS  PubMed  Google Scholar 

  • Clarke JD (2009) Cetyltrimethyl ammonium bromide (CTAB) DNA miniprep for plant DNA isolation. Cold Spring Harbor Protocols 2009, pdb. prot5177

  • Coffman FA (1977) Oat history, identification and classification. Agricultural Research Service, US Department of Agriculture

  • Collins FW (1989) Oat phenolics: avenanthramides, novel substituted N-cinnamoylanthranilate alkaloids from oat groats and hulls. J Agric Food Chem 37:60–66

    Article  CAS  Google Scholar 

  • Cooper L, Marquez-Cedillo L, Singh J, Sturbaum A, Zhang S, Edwards V, Johnson K, Kleinhofs A, Rangel S, Carollo V (2004) Mapping Ds insertions in barley using a sequence-based approach. Mol Genet Genomics 272:181–193

    Article  CAS  PubMed  Google Scholar 

  • Darbani B, Farajnia S, Toorchi M, Zakerbostanabad S, Noeparvar S (2008) DNA-delivery methods to produce transgenic plants. Biotechnology 7:385–402

    Article  CAS  Google Scholar 

  • Fogarty MC, Smith SM, Sheridan JL, Hu G, Islamovic E, Reid R, …, Hsieh TF (2020) Identification of mixed linkage β-glucan quantitative trait loci and evaluation of AsCslF6 homoeologs in hexaploid oat. Crop Sci 60(2):914–933

  • Gasparis S (2017) Agrobacterium-mediated transformation of leaf base segments. Oat. Springer, pp. 95–111

  • Gless C, Lörz H, Jähne-Gärtner A (1998) Transgenic oat plants obtained at high efficiency by microprojectile bombardment of leaf base segments. J Plant Physiol 152(2–3):151–157

    Article  CAS  Google Scholar 

  • Gornicki P, Faris J, King I, Podkowinski J, Gill B, Haselkorn R (1997) Plastid-localized acetyl-CoA carboxylase of bread wheat is encoded by a single gene on each of the three ancestral chromosome sets. Proc Natl Acad Sci 94(25):14179–14184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutierrez-Gonzalez JJ, Wise ML, Garvin DF (2013) A developmental profile of tocol accumulation in oat seeds. J Cereal Sci 57:79–83

    Article  CAS  Google Scholar 

  • Hernández M, Esteve T, Pla M (2005) Real-time polymerase chain reaction based assays for quantitative detection of barley, rice, sunflower, and wheat. J Agric Food Chem 53:7003–7009

    Article  PubMed  CAS  Google Scholar 

  • Ingham DJ, Beer S, Money S, Hansen G (2001) Quantitative real-time PCR assay for determining transgene copy number in transformed plants. Biotechniques 31:132–140

    Article  CAS  PubMed  Google Scholar 

  • Ismagul A, Yang N, Maltseva E, Iskakova G, Mazonka I, Skiba Y, Bi H, Eliby S, Jatayev S, Shavrukov Y (2018) A biolistic method for high-throughput production of transgenic wheat plants with single gene insertions. BMC Plant Biol 18:135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ito T, Motohashi R, Kuromori T, Mizukado S, Sakurai T, Kanahara H, Seki M, Shinozaki K (2002) A new resource of locally transposed Dissociationelements for screening gene-knockout lines in silico on the Arabidopsis genome. Plant Physiol 129:1695–1699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6(13):3901–3907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong D-H, An S, Kang H-G, Moon S, Han J-J, Park S, Lee HS, An K, An G (2002) T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiol 130:1636–1644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia Q, Zhang J, Westcott S, Zhang XQ, Bellgard M, Lance R, Li C (2009) GA-20 oxidase as a candidate for the semidwarf gene sdw1/denso in barley. Funct Integr Genomics 9(2):255–262

    Article  CAS  PubMed  Google Scholar 

  • Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL (2008) NCBI BLAST: a better web interface. Nucleic Acids Res 36:W5–W9. (available from http://www.ncbi.nlm.nih.gov/)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones DA, Thomas CM, Hammond-Kosack KE, Balint-Kurti PJ, Jones JD (1994) Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science 266(5186):789–793

    Article  CAS  PubMed  Google Scholar 

  • Jones HD, Sparks CA (2009) Selection of transformed plants. Transgenic wheat, barley and oats. Springer, pp. 23–37

  • Kaeppler H, Menon G, Skadsen R, Nuutila A-M, Carlson A (2000) Transgenic oat plants via visual selection of cells expressing green fluorescent protein. Plant Cell Rep 19:661–666

    Article  CAS  PubMed  Google Scholar 

  • Kaur R, Singh K, Singh J (2013) A root-specific wall-associated kinase gene, HvWAK1, regulates root growth and is highly divergent in barley and other cereals. Funct Integr Genomics 13(2):167–177

    Article  CAS  PubMed  Google Scholar 

  • Kaur M, Singh S (2017) Physical characteristics of different oat cultivars: influence on pasting, functional and antioxidant properties. Quality Assurance and Safety of Crops & Foods 9:285–293

    Article  CAS  Google Scholar 

  • Keddie JS, Carroll B, Jones J, Gruissem W (1996) The DCL gene of tomato is required for chloroplast development and palisade cell morphogenesis in leaves. EMBO J 15:4208–4217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ki CM, Je BI, Piao HL, Par SJ, Kim MJ, Park SH, Park JY, Park SH, Lee EK, Chon NS (2002) Reprogramming of the activity of the activator/dissociation transposon family during plant regeneration in rice. Mol Cells 14:231–237

    PubMed  Google Scholar 

  • Kianian S, Egli M, Phillips R, Rines H, Somers D, Gengenbach B, Webster F, Livingston S, Groh S, O’Donoughue L (1999) Association of a major groat oil content QTL and an acetyl-CoA carboxylase gene in oat. Theor Appl Genet 98:884–894

    Article  CAS  Google Scholar 

  • Kohli A, Leech M, Vain P, Laurie DA, Christou P (1998) Transgene organization in rice engineered through direct DNA transfer supports a two-phase integration mechanism mediated by the establishment of integration hot spots. Proc Natl Acad Sci 95:7203–7208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolesnik T, Szeverenyi I, Bachmann D, Kumar CS, Jiang S, Ramamoorthy R, Cai M, Ma ZG, Sundaresan V, Ramachandran S (2004) Establishing an efficient Ac/Ds tagging system in rice: large-scale analysis of Ds flanking sequences. Plant J 37:301–314

    Article  CAS  PubMed  Google Scholar 

  • Koprek T, McElroy D, Louwerse J, Williams-Carrier R, Lemaux PG (2000) An efficient method for dispersing Ds elements in the barley genome as a tool for determining gene function. Plant J 24:253–263

    Article  CAS  PubMed  Google Scholar 

  • Ladizinsky G (2012) Studies in oat evolution: a man’s life with Avena. Springer Science & Business Media

  • Lemaux P, Cho M, Louwerse J, Williams R, Wan Y (1996) Bombardment-mediated transformation methods for barley. Bio-Rad US/EG Bull 2007:1–6

    Google Scholar 

  • Liu M, Zhang Y, Zhang H, Hu B, Wang L, Qian H, Qi X (2016) The anti-diabetic activity of oat β-d-glucan in streptozotocin–nicotinamide induced diabetic mice. Int J Biol Macromol 91:1170–1176

    Article  CAS  PubMed  Google Scholar 

  • Luo X, Wight CP, Zhou Y, Tinker NA (2012) Characterization of chromosome-specific genomic DNA from hexaploid oat. Genome 55(4):265–268

    Article  CAS  PubMed  Google Scholar 

  • Majira A, Domin M, Grandjean O, Gofron K, Houba-Hérin N (2002) Seedling lethality in Nicotiana plumbaginifolia conferred by Ds transposable element insertion into a plant-specific gene. Plant Mol Biol 50:551–562

    Article  CAS  PubMed  Google Scholar 

  • McElroy D, Louwerse JD, McElroy SM, Lemaux PG (1997) Development of a simple transient assay for Ac/Ds activity in cells of intact barley tissue. Plant J 11:157–165

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • O’malley RC, Alonso JM, Kim CJ, Leisse TJ, Ecker JR (2007) An adapter ligation-mediated PCR method for high-throughput mapping of T-DNA inserts in the Arabidopsis genome. Nature protocols 2:2910

    Article  PubMed  CAS  Google Scholar 

  • Ochman H, Ayala FJ, Hartl DL (1993) [21] Use of polymerase chain reaction to amplify segments outside boundaries of known sequences. Methods in Enzymology. Elsevier, pp. 309–321

  • Page DR, Köhler C, da Costa-Nunes JA, Baroux C, Moore JM, Grossniklaus U (2004) Intrachromosomal excision of a hybrid Ds element induces large genomic deletions in Arabidopsis. Proc Natl Acad Sci 101:2969–2974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pawlowski WP, Somers DA (1996) Transgene inheritance in plants genetically engineered by microprojectile bombardment. Mol Biotechnol 6:17–30

    Article  CAS  PubMed  Google Scholar 

  • Pellizzaro K, Nava IC, Chao S, Pacheco MT, Federizzi LC (2016) Genetics and identification of markers linked to multiflorous spikelet in hexaploid oat. Crop Breeding and Applied Biotechnology 16:62–70

    Article  CAS  Google Scholar 

  • Pomeroy S, Tupper R, Cehun-Aders M, Nestel P (2001) Oat b-glucan lowers total and LDL-cholesterol. Aust J Nutr Diet 58:51–55

    Google Scholar 

  • Ros F, Kunze R (2001) Regulation of activator/dissociation transposition by replication and DNA methylation. Genetics 157:1723–1733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh J, Zhang S, Chen C, Cooper L, Bregitzer P, Sturbaum A, Hayes PM, Lemaux PG (2006) High-frequency Ds remobilization over multiple generations in barley facilitates gene tagging in large genome cereals. Plant Mol Biol 62:937–950

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Singh S, Randhawa H, Singh J (2013) Polymorphic homoeolog of key gene of RdDM pathway, ARGONAUTE4_9 class is associated with pre-harvest sprouting in wheat (Triticum aestivum L). PLoS One 8:e77009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh S, Tan HQ, Singh J (2012) Mutagenesis of barley malting quality QTLs with Ds transposons. Funct Integr Genomics 12:131–141

    Article  CAS  PubMed  Google Scholar 

  • Smith D, Yanai Y, Liu YG, Ishiguro S, Okada K, Shibata D, Whittier R, Fedoroff N (1996) Characterization and mapping of Ds—GUS-T-DNA lines for targeted insertional mutagenesis. Plant J 10:721–732

    Article  CAS  PubMed  Google Scholar 

  • Smulders M, De Klerk G (2011) Epigenetics in plant tissue culture. Plant Growth Regul 63:137–146

    Article  CAS  Google Scholar 

  • Somers DA, Rines HW, Gu W, Kaeppler HF, Bushnell WR (1992) Fertile, transgenic oat plants. Bio/technology 10:1589–1594

    CAS  Google Scholar 

  • Sterna V, Zute S, Brunava L (2016) Oat grain composition and its nutrition benefice. Agriculture and Agricultural Science Procedia 8:252–256

    Article  Google Scholar 

  • Storsley J, Jew S, Ames N (2013) Health claims for oat products: a global perspective. Oats Nutr Technol 333–356

  • Sunilkumar BA, Leonova S, Öste R, Olsson O (2017) Identification and characterization of high protein oat lines from a mutagenized oat population. J Cereal Sci 75:100–107

    Article  CAS  Google Scholar 

  • Tan H, Singh J (2011) High-efficiency thermal asymmetric interlaced (HE-TAIL) PCR for amplification of Ds transposon insertion sites in barley. J Plant Mol Biol Biotechnol 2:9–14

    Google Scholar 

  • Thompson CJ, Movva NR, Tizard R, Crameri R, Davies JE, Lauwereys M, Botterman J (1987) Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus. EMBO J 6:2519–2523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torbert K, Rines H, Somers D (1998) Transformation of oat using mature embryo-derived tissue cultures. Crop Sci 38:226–231

    Article  Google Scholar 

  • Torbert KA, Rines HW, Somers DA (1995) Use of paromomycin as a selective agent for oat transformation. Plant Cell Rep 14:635–640

    Article  CAS  PubMed  Google Scholar 

  • Tripathi RK, Bregitzer P, Singh J (2018) Genome-wide analysis of the SPL/miR156 module and its interaction with the AP2/miR172 unit in barley. Sci Rep 8(1):1–13

    Google Scholar 

  • Tripathi RK, Aguirre JA, Singh J (2021) Genome-wide analysis of wall associated kinase (WAK) gene family in barley. Genomics 113(1):523–530

    Article  CAS  PubMed  Google Scholar 

  • USDA: United States Department of Agriculture, Data and statistics (2019), available from https://www.nass.usda.gov/Data_and_Statistics/index.php

  • Van der Biezen EA, Brandwagt BF, van Leeuwen W, Nijkamp HJJ, Hille J (1996) Identification and isolation of theFEEBLY gene from tomato by transposon tagging. Mol Gen Genet MGG 251:267–280

    PubMed  Google Scholar 

  • Welch RW (1995) The chemical composition of oats. The oat crop. Springer, pp. 279–320

  • Yan H, Martin SL, Bekele WA, Latta RG, Diederichsen A, Peng Y, Tinker NA (2016) Genome size variation in the genus Avena. Genome 59:209–220

    Article  PubMed  Google Scholar 

  • Yan H-H, Baum BR, Zhou P-P, Zhao J, Wei Y-M, Ren C-Z, Xiong F-Q, Liu G, Zhong L, Zhao G (2014) Phylogenetic analysis of the genus Avena based on chloroplast intergenic spacer psb A–trn H and single-copy nuclear gene Acc1. Genome 57:267–277

    Article  CAS  PubMed  Google Scholar 

  • Yoder JI, Palys J, Alpert K, Lassner M (1988) Ac transposition in transgenic tomato plants. Mol Gen Genet MGG 213(2–3):291–296

    Article  CAS  Google Scholar 

  • Zwer P (2010) Oats: characteristics and quality requirements. Cereal Grains. Elsevier, pp. 163–182

Download references

Acknowledgements

Special thanks to Dr. Michael Ayliffe from CSIRO, Plant Industry Canberra, Australia, for providing the Ds-Bar-GUS activation tagging construct (Vec8). We also acknowledge Dr. Rajiv Tripathi for his guidance during CNV detection.

Funding

This study was financially supported by the Prairie Oat Growers Association (POGA) and Agriculture and Agri-Food Canada.

Author information

Authors and Affiliations

Authors

Contributions

MM: investigation and writing; ZZ: bioinformatic analysis, investigation, and writing; RK: investigation and transformation; WB: reviewing and writing; NT: conceptualization and investigation; JS: conceptualization, investigation, and writing.

Corresponding author

Correspondence to Jaswinder Singh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 336 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoud, M., Zhou, Z., Kaur, R. et al. Toward the development of Ac/Ds transposon-mediated gene tagging system for functional genomics in oat (Avena sativa L.). Funct Integr Genomics 22, 669–681 (2022). https://doi.org/10.1007/s10142-022-00861-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-022-00861-9

Keywords

Navigation