Skip to main content
Log in

Structural organization of fatty acid desaturase loci in linseed lines with contrasting linolenic acid contents

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Flax (Linum usitatissimum L.), the richest crop source of omega-3 fatty acids (FAs), is a diploid plant with an estimated genome size of ~370 Mb and is well suited for studying genomic organization of agronomically important traits. In this study, 12 bacterial artificial chromosome clones harbouring the six FA desaturase loci sad1, sad2, fad2a, fad2b, fad3a and fad3b from the conventional variety CDC Bethune and the high linolenic acid line M5791 were sequenced, analysed and compared to determine the structural organization of these loci and to gain insights into the genetic mechanisms underlying FA composition in flax. With one gene every 3.2–4.6 kb, the desaturase loci have a higher gene density than the genome’s average of one gene per 7.8–8.2 kb. The gene order and orientation across the two genotypes were generally conserved with the exception of the sad1 locus that was predicted to have additional genes in CDC Bethune. High sequence conservation in both genic and intergenic regions of the sad and fad2b loci contrasted with the significant level of variation of the fad2a and fad3 loci, with SNPs being the most frequently observed mutation type. The fad2a locus had 297 SNPs and 36 indels over ~95 kb contrasting with the fad2b locus that had a mere seven SNPs and four indels in ~110 kb. Annotation of the gene-rich loci revealed other genes of known role in lipid or carbohydrate metabolic/catabolic pathways. The organization of the fad2b locus was particularly complex with seven copies of the fad2b gene in both genotypes. The presence of Gypsy, Copia, MITE, Mutator, hAT and other novel repeat elements at the desaturase loci was similar to that of the whole genome. This structural genomic analysis provided some insights into the genomic organization and composition of the main desaturase loci of linseed and of their complex evolution through both tandem and whole genome duplications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Banik M, Duguid S, Cloutier S (2011) Transcript profiling and gene characterization of three fatty acid desaturase genes in high, moderate and low linolenic acid genotypes of flax (Linum usitatissimum L.) and their role in linolenic acid accumulation. Genome 54:471–483

    Article  CAS  PubMed  Google Scholar 

  • Baud S, Lepiniec L (2010) Physiological and developmental regulation of seed oil production. Prog Lipid Res 49:235–249

    Article  CAS  PubMed  Google Scholar 

  • Bickel CL, Lukacs M, Cullis CA (2012) The loci controlling plasticity in flax. Res Rep Biol 3:1–11

    Article  CAS  Google Scholar 

  • Brodie R, Roper RL, Upton C (2004) JDOTTER: a java interface to multiple dotplots generated by dotter. Bioinformatics 20:279–281

    Article  CAS  PubMed  Google Scholar 

  • Cao S, Zhou XR, Wood CC, Green AG, Singh SP, Liu L, Liu Q (2013) A large and functionally diverse family of Fad2 genes in safflower (Carthamus tinctorius L.). BMC Plant Biol 13:5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Zhou XR, Zhang ZJ, Dribeneki P, Singh S, Green A (2015) Development of high oleic oil crop platform in flax through RNA-mediated multiple FAD2 gene silencing. Plant Cell Rep 34:643–653

    Article  CAS  PubMed  Google Scholar 

  • Cloutier S, Ragupathy R, Niu Z, Duguid S (2011) SSR-based linkage map of flax (Linum usitatissimum L.) and mapping of QTLs underlying fatty acid composition traits. Mol Breed 28:437–451

    Article  CAS  Google Scholar 

  • Cullis CA (1973) DNA differences between flax genotrophs. Nature 243:515–516

    Article  CAS  PubMed  Google Scholar 

  • Cullis CA (1981) DNA-sequence organization in the flax genome. Biochim Biophys Acta 652:1–15

    Article  CAS  PubMed  Google Scholar 

  • Cullis CA (2005) Mechanisms and control of rapid genomic changes in flax. Ann Bot 95:201–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cullis CA, Cleary W (1986) Rapidly varying DNA-sequences in flax. Can J Genet Cytol 28:252–259

    Article  CAS  Google Scholar 

  • Defraia C, Slotkin RK (2014) Analysis of retrotransposon activity in plants. Methods Mol Biol 1112:195–210

    Article  CAS  PubMed  Google Scholar 

  • Durrant A (1962) The environmental induction of heritable change in Linum. Heredity 17:27–61

    Article  Google Scholar 

  • Ellinghaus D, Kurtz S, Willhoeft U (2008) LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinf 9:18

    Article  Google Scholar 

  • Feschotte C, Jiang N, Wessler SR (2002) Plant transposable elements: where genetics meets genomics. Nat Rev Genet 3:329–341

    Article  CAS  PubMed  Google Scholar 

  • Fofana B, Duguid S, Cloutier S (2004) Cloning of fatty acid biosynthetic genes β-ketoacyl CoA synthase, fatty acid elongase, stearoyl-ACP desaturase, and fatty acid desaturase and analysis of expression in the early developmental stages of flax (Linum usitatissimum L.) seeds. Plant Sci 166:1487–1496

    Article  CAS  Google Scholar 

  • Fofana B, Cloutier S, Duguid S, Ching J, Rampitsch C (2006) Gene expression of stearoyl-ACP desaturase and Δ12 fatty acid desaturase 2 is modulated during seed development of flax (Linum usitatissimum). Lipids 41:705–712

    Article  CAS  PubMed  Google Scholar 

  • Fofana B, Ragupathy R, Cloutier S (2010) Flax lipids: classes, biosynthesis, genetics and the promise of applied genomics for understanding and altering of fatty acids. In: Gilmore PL (ed) Lipids: categories, biological functions and metabolism, nutrition, and health. Nova Science, New York, pp 71–98

    Google Scholar 

  • Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postle-Thwait J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531–1545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Friedt W, Bickert C, Schaub H (1995) In vitro breeding of high linolenic, doubled haploid lines of linseed (Linum usitatissimum L.) via androgenesis. Plant Breed 114:322–326

    Article  Google Scholar 

  • González LG, Deyholos MK (2012) Identification, characterization and distribution of transposable elements in the flax (Linum usitatissimum L.) genome. BMC Genomics 13:644

    Article  PubMed  PubMed Central  Google Scholar 

  • Green AG (1986) Genetic control of polyunsaturated fatty acid biosynthesis in flax (Linum usitatissimum) seed oil. Theor Appl Genet 72:654–661

    Article  CAS  PubMed  Google Scholar 

  • Heppard EP, Kinney AJ, Stecca KL, Miao GH (1996) Developmental and growth temperature regulation of two different microsomal omega-6 desaturase genes in soybeans. Plant Physiol 110:311–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson C, Moss T, Cullis C (2011) Environmentally induced heritable changes in flax. J Vis Exp 47:2332

    PubMed  Google Scholar 

  • Kenaschuk EO (2005) High linolenic acid flax. US patent 6870077 issued on March 22, 2005

  • Khadake RM, Ranjekar PK, Harsulkar AM (2009) Cloning of a novel omega-6 desaturase from flax (Linum usitatissimum) and its functional analysis in Saccharomyces cerevisiae. Mol Biotechnol 42:168–174

  • Khadake R, Khonde V, Mhaske V, Ranjekar P, Harsulkar A (2011) Functional and bioinformatic characterisation of sequence variants of Fad3 gene from flax. J Sci Food Agric 91:2689–2696

    Article  CAS  PubMed  Google Scholar 

  • Krasowska A, Dziadkowiec D, Polinceusz A, Plonka A, Łukaszewicz M (2007) Cloning of flax oleic fatty acid desaturase and its expression in yeast. J Am Oil Chem Soc 84:809–816

    Article  CAS  Google Scholar 

  • Kumar S, Jordan MC, Datla R, Cloutier S (2013) The LuWD40-1 gene encoding WD repeat protein regulates growth and pollen viability in flax (Linum usitatissimum L.). PLOS One 8:e69124

  • Kumar S, You FM, Duguid S, Booker H, Rowland G, Cloutier S (2015) QTL for fatty acid composition and yield in linseed (Linum usitatissimum L.). Theor Appl Genet 128:965–984

    Article  CAS  PubMed  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li LY, Wang XL, Gai JY, Yu DY (2007) Molecular cloning and characterization of a novel microsomal oleate desaturase gene from soybean. J Plant Physiol 164:1516–1526

    Article  CAS  PubMed  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan T, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo MC, Thomas C, You FM, Hsiao J, Ouyang S, Buell CR, Malandro M, McGuire PE, Anderson OD, Dvorak J (2003) High-throughput fingerprinting of bacterial artificial chromosomes using the snapshot labeling kit and sizing of restriction fragments by capillary electrophoresis. Genomics 82:378–389

    Article  CAS  PubMed  Google Scholar 

  • Makarevitch I, Waters AJ, West PT, Stitzer M, Hirsch CN, Ross-Ibarra J, Springer NM (2015) Transposable elements contribute to activation of maize genes in response to abiotic stress. PLoS Genet 11:e1004915

    Article  PubMed  PubMed Central  Google Scholar 

  • Mikkilineni V, Rocheford TR (2003) Sequence variation and genomic organization of fatty acid desaturase-2 (Fad2) and fatty acid desaturase-6 (Fad6) cDNAs in maize. Theor Appl Genet 106:1326–1332

    CAS  PubMed  Google Scholar 

  • Milne I, Stephen G, Bayer M, Cock PJA, Pritchard L, Cardle L, Shaw PD, Marshall D (2013) Using tablet for visual exploration of second-generation sequencing data. Brief Bioinform 14:193–202

    Article  CAS  PubMed  Google Scholar 

  • Morgante M, De Paoli E, Radovic S (2007) Transposable elements and the plant pan-genomes. Curr Opin Plant Biol 10:149–155

    Article  CAS  PubMed  Google Scholar 

  • Nilmalgoda SD, Cloutier S, Walichnowski AZ (2003) Construction and characterization of a bacterial artificial chromosome (BAC) library of hexaploid wheat (Triticum aestivum L.) and validation of genome coverage using locus-specific primers. Genome 46:870–878

    Article  CAS  PubMed  Google Scholar 

  • Nussbaumer T, Martis MM, Roessner SK, Pfeifer M, Bader KC, Sharma S, Gundlach H, Spannagl M (2013) MIPS PlantsDB: a database framework for comparative plant genome research. Nucleic Acids Res 4:D1144–D1151

    Article  Google Scholar 

  • Ohlrogge JB, Jaworski JG (1997) Regulation of fatty acids synthesis. Annu Rev Plant Physiol Plant Mol Biol 48:109–136

    Article  CAS  PubMed  Google Scholar 

  • Pan X, Siloto RM, Wickramarathna AD, Mietkiewska E, Weselake RJ (2013) Identification of a pair of phospholipid:diacylglycerol acyltransferases from developing flax (Linum usitatissimum L.) seed catalyzing the selective production of trilinolenin. J Biol Chem 1288:24173–24188

    Article  Google Scholar 

  • Radovanovic N, Thambugala D, Duguid S, Loewen E, Cloutier S (2014) Functional characterization of flax fatty acid desaturase FAD2 and FAD3 isoforms expressed in yeast reveals a broad diversity in activity. Mol Biotechnol 56:609–620

    Article  CAS  PubMed  Google Scholar 

  • Ragupathy R, Rathinavelu R, Cloutier S (2011) Physical mapping and BAC-end sequence analysis provide initial insights into the flax (Linum usitatissimum L.) genome. BMC Genomics 12:217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowland GG (1991) An EMS-induced low-linolenic-acid mutant in McGregor flax (Linum usitatissimum L.). Can J Plant Sci 71:393–396

    Article  CAS  Google Scholar 

  • Rowland GG, Hormis YA, Rashid KY (2002) CDC Bethune flax. Can J Plant Sci 82:101–102

    Article  Google Scholar 

  • Scheffler JA, Schimdt H, Sperling P, Parkin IAP, Luhs W, Lydiate DJ, Heinz E (1997) Desaturase multigene families of Brassica napus arose through genome duplication. Theor Appl Genet 94:583–591

    Article  CAS  Google Scholar 

  • Schlueter JA, Vasylenko-Sanders IF, Deshpande S, Yi J, Siegfried M, Roe BA, Schlueter SD, Scheffler BE, Shoemaker RC (2007) The FAD2 gene family of soybean: insights into the structural and functional divergence of a paleopolyploid genome. Crop Sci 47:S14–S26

    Article  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  CAS  PubMed  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei FS, Pasternak S, Liang CZ, Zhang JW, Fulton L, Graves TA et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Chauhan RS (2012) In silico identification and comparative genomics of candidate genes involved in biosynthesis and accumulation of seed oil in plants. Comp Funct Genomics Article ID 914843, 14 pages

  • Singh S, McKinney S, Green A (1994) Sequence of a cDNA from Linum usitatissimum encoding the stearoyl-ACP carrier protein desaturase. Plant Physiol 140:1075

    Article  Google Scholar 

  • Soto-Cerda BJ, Duguid S, Booker H, Rowland G, Diederichsen A, Cloutier S (2014) Association mapping of seed quality traits using the flax (Linum usitatissimum L.) core collection. Theor Appl Genet 127:881–896

    Article  PubMed  PubMed Central  Google Scholar 

  • Springer NM, Lisch D, Li Q (2016) Creating order from chaos: epigenome dynamics in plants with complex genomes. Plant Cell 28:314–325

    Article  PubMed  Google Scholar 

  • Sveinsson S, McDill J, Wong GK, Li J, Li X, Deyholos MK, Cronk QC (2014) Phylogenetic pinpointing of a paleopolyploidy event within the flax genus (Linum) using transcriptomics. Ann Bot 113:753–761

    Article  PubMed  Google Scholar 

  • Swinnen G, Goossens A, Pauwels L (2016) Lessons from domestication: targeting cis-regulatory elements for crop improvement. Trends Plant Sci. doi:10.1016/j.tplants.2016.01.014

    PubMed  Google Scholar 

  • Tatusova TA, Madden TL (1999) BLAST 2 sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett 174:247–250

    Article  CAS  PubMed  Google Scholar 

  • Thambugala D, Cloutier S (2014) Fatty acid composition and desaturase gene expression in flax (Linum usitatissimum L.). J Appl Genet 55:423–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thambugala D, Duguid S, Loewen E, Rowland G, Booker H, You FM, Cloutier S (2013) Genetic variation of six desaturase genes in flax and their impact on fatty acid composition. Theor Appl Genet 126:2627–2641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vrinten P, Hu Z, Munchinsky MA, Rowland G, Qiu X (2005) Two FAD3 desaturase genes control the level of linolenic acid in flax seed. Plant Physiol 139:79–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Hobson N, Galindo L, Zhu S, Shi D, McDill J, Yang L, Hawkins S, Neutelings G, Datla R, Lambert G, Galbraith DW, Grassa CJ, Geraldes A, Cronk QC, Cullis C, Dash PK, Kumar PA, Cloutier S, Sharpe AG, Wong GK, Wang J, Deyholos MK (2012) The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads. Plant J 72:461–473

    Article  PubMed  Google Scholar 

  • Warude D, Joshi K, Harsulkar A (2006) Polyunsaturated fatty acids: biotechnology. Crit Rev Biotechnol 26:83–93

    Article  CAS  PubMed  Google Scholar 

  • Wei L, Cao X (2016) The effect of transposable elements on phenotypic variation: insights from plants to humans. Sci China Life Sci 59:24–37

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Wang H (2007) LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res 35:W265–W268

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang G (2013) MITE Digger, an efficient and accurate algorithm for genome wide discovery of miniature inverted repeat transposable elements. BMC Bioinf 14:186

    Article  Google Scholar 

  • You FM, Li P, Kumar S, Ragupathy R, Li Z, Fu YB, Cloutier S (2014) Genome wide identification and characterization of the gene families controlling fatty acid biosynthesis in flax (Linum usitatissimum L). J Proteomics Bioinform 7:310–326

    CAS  Google Scholar 

  • You FM, Cloutier S, Shan Y, Ragupathy R (2015) LTRAnnotator: automated identification and annotation of LTR retrotransposons in plant genomes. Int J Biosci Biochem Bioinform 5:165–174

    Google Scholar 

  • Zhang D, Pirtle IL, Park SJ, Nampaisansuk M, Neogi P, Wanjie SW, Pirtle RM, Chapman KD (2009) Identification and expression of a new delta-12 fatty acid desaturase (FAD2-4) gene in upland cotton and its functional expression in yeast and Arabidopsis thaliana plants. Plant Physiol Biochem 47:462–471

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was conducted as part of the Total Utilization Flax GENomics (TUFGEN) project funded by Genome Canada and other stakeholders including the Flax Council of Canada, Manitoba Flax Growers Association and the Province of Manitoba. Project management and support by Genome Prairie are also gratefully acknowledged. We are thankful to Dr. Raju Datla of the National Research Council, Saskatoon, Saskatchewan, Canada, for generating the RNA-Seq dataset for flax and making it available through the TUFGEN project website (http://linum.ca/downloads/RNAseq). We wish to acknowledge the contribution of Dr. Frank M. You for generating the BAM files and co-developing LTRAnnotator, Travis Bank for the 454 assemblies of the BAC clones, Andrzej Walichnowski for manuscript editing and Manoj Sekhwal for initial preparation of GenBank submission files.

Authors’ contribution

Author Dinushika Thambugala conducted this work as part of her PhD thesis. Dinushika Thambugala carried out the analysis, interpreted the data and co-wrote the manuscript. Dr. Raja Ragupathy provided the analysis of the repeat elements. Dr. Sylvie Cloutier designed the experiments, generated the sequence data, participated in the interpretation of the data and co-wrote the manuscript. The authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Cloutier.

Ethics declarations

The authors declared that the work in this manuscript was carried out in accordance with the current laws and regulations in Canada. The work is original except where indicated by special reference in the text and no part of the manuscript has been submitted for publication elsewhere. Any views expressed in the manuscript are those of the authors.

Conflict of interest

The authors declared that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Primers used to identify BAC clones harboring the desaturase genes and names of the sequenced clones (PDF 9 kb)

ESM 2

Summary of 454 sequencing statistics of the 12 BAC clones from CDC Bethune and M5791 fatty acid desaturase loci sad1, sad2, fad2a, fad2b, fad3a and fad3b (PDF 12 kb)

ESM 3

Annotation of genes located of the 12 BAC sequences harbouring the fatty acid desaturase loci sad1, sad2, fad2a, fad2b, fad3a and fad3b of CDC Bethune and M5791 (PDF 937 kb)

ESM 4

Transposable elements identified in the 12 BACs harbouring sad1, sad2, fad2a, fad2b, fad3a and fad3b loci of CDC Bethune and M5791 (PDF 23 kb)

ESM 5

List of expressed genes identified in the 12 BAC sequences and their level of expression in different tissues of linseed variety CDC Bethune based on normalized RNA-Seq data and expressed as fragments per kb of transcripts per million mapped reads (FPKM) as previously described (Kumar et al. 2013). The RNA-Seq data was provided by Dr. Raju Datla, National Research Council, Saskatoon, SK, Canada and was extracted from the publically available website (http://linum.ca/downloads/RNAseq) (PDF 162 kb)

ESM 6

Dot plots of desaturase loci BAC sequences of CDC Bethune (x-axis) and M5791 (y-axis) performed using JDOTTER (Brodie et al. 2004) with default parameters. a sad1, b sad2, c fad2a, d fad2b, e fad3a and f fad3b (PDF 395 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thambugala, D., Ragupathy, R. & Cloutier, S. Structural organization of fatty acid desaturase loci in linseed lines with contrasting linolenic acid contents. Funct Integr Genomics 16, 429–439 (2016). https://doi.org/10.1007/s10142-016-0494-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-016-0494-z

Keywords

Navigation