Skip to main content
Log in

Comparative proteomics reveals differential induction of both biotic and abiotic stress response associated proteins in rice during Xanthomonas oryzae pv. oryzae infection

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight disease in rice and brutally affects the yield up to 50 % of total production. Here, we report a comparative proteomics analysis of total foliar protein isolated from infected rice leaves of susceptible Pusa Basmati 1 (PB1) and resistant Oryza longistaminata genotypes. Two-dimensional gel electrophoresis (2-DE) coupled with matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) approaches identified 29 protein spots encoding unique proteins from both the genotypes. Identified proteins belonged to a large number of biological and molecular functions related to biotic and abiotic stress proteins which are potentially involved during Xoo infection. Biotic and abiotic stress-related proteins were induced during Xoo infection, indicating the activation of common stress pathway during bacterial blight infection. Candidate genes conferring tolerance against bacterial blight, which include germin-like protein, putative r40c1, cyclin-dependent kinase C, Ent-isokaur-15-ene synthase and glutathione-dependent dehydroascorbate reductase 1 (GSH-DHAR1), were also induced, with germin-like proteins induced only in the resistant rice genotype O. longistaminata. Energy, metabolism and hypothetical proteins were common among both the genotypes. Further, host defence/stress-related proteins were mostly expressed in resistant genotype O. longistaminata, indicating possible co-evolution of the pathogen and the wild rice, O. longistaminata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

2-DE:

Two-dimensional gel electrophoresis

CRD:

Completely randomized design

HR:

Hypersensitive response

IPG:

Immobilized pH gradient

IEF:

Isoelectric focusing

MALDI-TOF:

Matrix-assisted laser desorption/ionization time-of-flight

MS:

Mass spectrometry

PWC:

Pot water holding capacity

SWC:

Soil water capacity

Xoo :

Xanthomonas oryzae pv. oryzae

References

  • Agrawal GK, Rakwal R (2006) Rice proteomics: a cornerstone for cereal food crop proteomes. Mass Spectrom Rev 25:1–53

    Article  CAS  PubMed  Google Scholar 

  • Agrawal GK, Rakwal R, Yonekura M, Kubo A, Saji H (2002) Proteome analysis of differentially displayed proteins as a tool for investigating ozone stress in rice (Oryza sativa L.) seedlings. Proteomics 2:947–959

    Article  CAS  PubMed  Google Scholar 

  • Akram A, Ongena M, Duby F, Dommes J, Thonart P (2008) Systemic resistance and lipoxygenase-related defence response induced in tomato by Pseudomonas putida strain BTP1. BMC Plant Biol 8:13

    Article  Google Scholar 

  • Alvarez M, Pennell R, Meijer P, Ishikawa A, Dixon R, Lamb C (1998) Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92:773–784

    Article  CAS  PubMed  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygen species and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  CAS  PubMed  Google Scholar 

  • Asada K, Kiso K, Yoshikawa K (1974) Univalent reduction of molecular oxygen by spinach chloroplasts on illumination. J Biol Chem 249:2175–2181

    CAS  PubMed  Google Scholar 

  • Bevan M, Bancroft I, Bent E, Love K, Goodman H, Dean C, Bergkamp R, Dirkse W, Van Staveren M, Stiekema W et al (1998) Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature 391:485–488

    Article  CAS  PubMed  Google Scholar 

  • Bolwell G, Wojtaszek P (1997) Mechanism for the generation of reactive species of oxygen species in plant defence: a broad perspective. Physiol Mol Plant Pathol 51:347–366

    Article  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brar DS, Khush GS (2002) Transferring gene from wild species into rice. Quant Genet, Genomic Plant Breed (ed MS Kang) 14:197–217

    Google Scholar 

  • Carpentier SC, Witters E, Laukens K, Van Onckelen H, Swennen R, Panis B (2007) Banana (Musa spp.) as a model to study the meristem proteome: acclimation to osmotic stress. Proteomics 7:92–105

    Article  CAS  PubMed  Google Scholar 

  • Cartwright DW, Langcake P, Pryce RJ, Leworthy DP, Ride JP (1981) Isolation and characterization of two phytoalexins from rice as momilactones A and B. Phytochemistry 20:535–537

    Article  CAS  Google Scholar 

  • Casimiro I, Marchant A, Bhalerao RP, Beeckman T, Dhooge S, Swarup R, Graham N, Inzé D, Sandberg G, Casero PJ, Bennett MJ (2001) Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell 13:843–852

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen F, Yuan Y, Li Q, He Z (2007) Proteomic analysis of rice plasma membrane reveals proteins involved in early defense response to bacterial blight. Proteomics 7:1529–1539

    Article  CAS  PubMed  Google Scholar 

  • Cho EM, Okada A, Kenmoku H, Otomo K et al (2004) Molecular cloning and characterization of a cDNA encoding ent-cassa-12,15-diene synthase, a putative diterpenoid phytoalexin biosynthetic enzyme, from suspension-cultured rice cells treated with a chitin elicitor. Plant J 37:1–8

    Article  CAS  PubMed  Google Scholar 

  • Claes B, Dekeyser R, Villarroel R, Van den Bulcke M, Bauw G, Van Montagu M, Caplan A (1990) Characterization of rice gene showing organ-specific expression in response to salt stress and drought. Plant Cell 2:19–27

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Coaker GL, Willard B, Kinter M, Stockinger EJ, Francis DM (2004) Proteomic analysis of resistance mediated by Rcm 2.0 and Rcm 5.1, two loci controlling resistance to bacterial canker of tomato. Mol Plant-Microbe Interact 17(9):1019–1028

    Article  CAS  PubMed  Google Scholar 

  • Dayakar BV, Lin HJ, Chen CH, Ger MJ, Lee BH, Pai CH, Chow D, Huang HE, Hwang SY, Chung MC, Feng TY (2003) Ferredoxin from sweet pepper (Capsicum annuum L.) intensifying harpin (pss)-mediated hypersensitive response shows an enhanced production of active oxygen species (AOS). Plant Mol Biol 51:913–924

    Article  CAS  PubMed  Google Scholar 

  • Edwards R, Dixon DP (2005) Plant glutathione transferases. Methods Enzymol 401:169–186

    Article  CAS  PubMed  Google Scholar 

  • FAO (2009) The state of food and agriculture (ISSN 0081–4539)

  • Farinati S, DalCorso G, Panigati M, Furini A (2011) Interaction between selected bacterial strains and Arabidopsis halleri modulates shoot proteome and cadmium and zinc accumulation. J Exp Bot 62:3433–3447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Federico M, Iniguez-Luy F, Skadsen R, Kaeppler H (2006) Spatial and temporal divergence of expression in duplicated barley germin-like protein-encoding genes. Genetics 174:179–190

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Finnie C, Andersen CH, Borch J, Gjetting S, Christensen AB, de Boer AH, Thordal-Christensen H, Collinge DB (2002) Do 14-3-3 proteins and plasma membrane H+-AtPases interact in the barley epidermis in response to the barley powdery mildew fungus? Plant Mol Biol 49:137–147

    Article  CAS  Google Scholar 

  • Fujii J, Ikeda Y (2002) Advances in our understanding of peroxiredoxin, a multifunctional, mammalian redox protein. Redox Rep 7:123–130

    Article  CAS  PubMed  Google Scholar 

  • Godfrey D, Able A, Dry I (2007) Induction of a grapevine germin-like protein (VvGLP3) gene is closely linked to the site of Erysiphe necator infection: a possible role in defense? Mol Plant Microbe Interact 20:1112–1125

    Article  CAS  PubMed  Google Scholar 

  • Granier C, Inze D, Tardieu F (2000) Spatial distribution of cell division rate can be deduced from that of p34 (cdc2) kinase activity in maize leaves grown at contrasting temperatures and soil water conditions. Plant Physiol 124:1393–1402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hajheidari M, Abdollahian-Noghabi M, Askari H, Heidari M, Sadeghian SY, Ober ES, Salekdeh GH (2005) Proteome analysis of sugar beet leaves under drought stress. Proteomics 5:950–960

    Article  CAS  PubMed  Google Scholar 

  • Heath MC (2000) Nonhost resistance and nonspecific plant defenses. Curr Opin Plant Biol 3:315–319

    Article  CAS  PubMed  Google Scholar 

  • Huang HE, Ger MJ, Chen CY, Pandey AK, Yip MK, Chou HW, Feng TY (2007) Disease resistance to bacterial pathogens affected by the amount of ferredoxin-I protein in plants. Mol Plant Pathol 8:129–137

    Article  CAS  PubMed  Google Scholar 

  • Jain M, Challa G, Bhattacharjee A (2010) Comprehensive expression analysis suggests overlapping and specific roles of rice glutathione S-transferase genes during development and stress responses. BMC genomics 11:73

    Article  PubMed Central  PubMed  Google Scholar 

  • Jost R, Altschmied L, Bloem E, Bogs J, Gershenzon J et al (2005) Expression profiling of metabolic genes in response to methyl jasmonate reveals regulation of genes of primary and secondary sulfur-related pathways in Arabidopsis thaliana. Photosynth Res 86:491–508

    Article  CAS  PubMed  Google Scholar 

  • Kadota Y, Watanabe T, Fujii S, Higashi K, Sano T, Nagata T, Hasezawa S, Kuchitsu K (2004) Crosstalk between elicitor-induced cell death and cell cycle regulation in tobacco BY-2 cells. Plant J 40:131–142

    Article  CAS  PubMed  Google Scholar 

  • Kampranis SC, Damianova R, Atallah M, Toby G, Kondi G, Tsichlis PN, Makris AM (2000) A novel plant glutathione S-transferase/peroxidase suppresses Bax lethality in yeast. J Biol Chem 275:29207–29216

    Article  CAS  PubMed  Google Scholar 

  • Kato H, Kodama O, Akatsuka T (1994) Oryzalexin F, a diterpenes phytoalexin from UV-irradiated rice leaves. Phytochemistry 36:299–301

    Article  CAS  Google Scholar 

  • Kato-Noguchi H, Ino T (2003) Rice seedlings release momilactone B into the environment. Phytochemistry 63:551–554

    Article  CAS  PubMed  Google Scholar 

  • Khush GS (2005) What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol Biol 59:1–6

    Article  CAS  PubMed  Google Scholar 

  • Khush GS, Mackill DJ, Sidhu GS (1989) Breeding rice for resistance to bacterial blight. Bacterial Blight of Rice. Proceedings of the International Workshop on Bacterial Blight Rice, IRRI, Manila, Philippines, 207–17

  • Kim ST, Chon KS, Yu S, Kim SG, Hong JC, Han CD, Bae DW, Nam MH, Kang KY (2003) Proteomic analysis of differentially expressed proteins induced by rice blast fungus and elicitor in suspension-cultured rice cells. Proteomics 3:2368–2378

    Article  CAS  PubMed  Google Scholar 

  • Knaff DB, Hirasawa M (1991) Ferredoxin-dependent chloroplast enzymes. Biochim Biophys Acta 1056:93–125

    Article  CAS  PubMed  Google Scholar 

  • Kodama O, Li WX, Tamogami S, Akatsuka T (1992) Oryzalexin S, a novel stemarane-type diterpene rice phytoalexin. Biosci Biotechnol Biochem 56:1002–1003

    Article  CAS  Google Scholar 

  • Koga J, Ogawa N, Yamauchi T, Kikuchi N, Ogasawara N, Shimura M (1997) Functional moiety for the antifungal activity of phytocassane E, a diterpene phytoalexin from rice. Phytochemistry 44:249–253

    Article  CAS  Google Scholar 

  • Konishi H, Ishiguro K, Komatsu SA (2001) Proteomics approach towards understanding blast fungus infection of rice grown under different levels of nitrogen fertilization. Proteomics 1:1162–1171

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Majeti NVP (2014) Proteomic responses to lead-induced oxidative stress in Talinum triangulare Jacq. (Willd.) roots: identification of key biomarkers related to glutathione metabolisms. Environ Sci Pollut Res 21:8750–64. doi:10.1007/s11356-014-2808-9

    Article  CAS  Google Scholar 

  • Kumar A, Guha A, Bimolata W, Reddy AR, Laha GS, Sundaram RM, Pandey MK, Ghazi IA (2013) Leaf gas exchange physiology in rice genotypes infected with bacterial blight: an attempt to link photosynthesis with disease severity and rice yield. Aust J Crop Sci 7(1):32–39

    CAS  Google Scholar 

  • Lane B (2002) Oxalate, germins, and higher-plant pathogens. IUBMB Life 53:67–75

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Guo Y, Ohta M, Xiong L, Stevenson B, Zhu JK (2002) LOS2, a genetic locus required for cold-responsive gene transcription encodes a bi-functional enolase. EMBO J 21:2692–2702

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li D, Wang L, Teng S, Zhang G, Guo L, Mao Q, Wang W, Li M, Chen L (2012) Proteomics analysis of rice proteins up-regulated in response to bacterial leaf streak disease. J Plant Biol 55:316–324

    Article  CAS  Google Scholar 

  • Lin SK, Chang MC, Tsai YG, Lur HS (2005) Proteomic analysis of the expression of proteins related to rice quality during caryopsis development and the effect of high temperature on expression. Proteomics 5:2140–2156

    Article  CAS  PubMed  Google Scholar 

  • Lin YZ, Chen HY, Kao R, Chang SP, Chang SJ, Lai EM (2008) Proteomic analysis of rice defense response induced by probenazole. Phytochemistry 69:715–728

    Article  CAS  PubMed  Google Scholar 

  • Lou Y, Baldwin I (2006) Silencing of a germin-like gene in Nicotiana attenuata improves performance of native herbivores. Plant Physiol 140:1126–1136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mahmood T, Jan A, Kakishima M, Komatsu S (2006) Proteomic analysis of bacterial-blight defense-responsive proteins in rice leaf blades. Proteomics 6(22):6053–6065

    Article  CAS  PubMed  Google Scholar 

  • Mahmood T, Kakishima M, Komatsu S (2009) Proteome analysis of probenazol effect in rice bacterial blight infection. Protein Pept Lett 16:1041–1052

    Article  CAS  PubMed  Google Scholar 

  • Manosalva PM, Rebecca M, Davidson RM, Liu B, Zhu X, Hulbert SH, Leung H, Leach JE (2009) A germin-like protein gene family functions as a complex quantitative trait locus conferring broad-spectrum disease resistance in rice. Plant Physiol 149:286–296

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mellon JE, West CA (1979) Diterpene biosynthesis in maize seedlings in response to fungal infection. Plant Physiol 64:406–410

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morris AC, Djordjevic MA (2001) Proteome analysis of cultivar-specific interactions between Rhizobium leguminosarum biovar trifolii and subterranean clover cultivar Woogenellup. Electrophoresis 22:586–598

    Article  CAS  PubMed  Google Scholar 

  • Mutuku M, Nose A (2010) Rhizoctonia solani infection in two rice lines increases mRNA expression of metabolic enzymes genes in glycolytic, oxidative pentose phosphate pathways and secondary metabolism. Trop Agric Dev 54:119–131

    CAS  Google Scholar 

  • Narsai R, Wang C, Chen J, Wu J, Shou H, Whelan J (2013) Antagonistic, overlapping and distinct responses to biotic stress in rice (Oryza sativa) and interactions with abiotic stress. BMC Genomics 14:93

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nino-Liu DO, Ronald PC, Bogdanove AJ (2006) Xanthomonas oryzae pathovars: model pathogens of a model crop. Mol Plant Pathol 7(5):303–324

    Article  CAS  PubMed  Google Scholar 

  • Ou SH (1985) Rice disease, 2nd edn. CMI, Kew, England, pp 61–96

    Google Scholar 

  • Oztetik E (2008) A tale of plant glutathione S-transferase: since 1970. Bot Rev 74:419–437

    Article  Google Scholar 

  • Parker R, Flowers TJ, Moore AL, Harpham NVJ (2006) An accurate and reproducible method for proteome profiling of the effects of salt stress in the rice leaf lamina. J Exp Bot 57:1109–1118

    Article  CAS  PubMed  Google Scholar 

  • Peck SC, Nühse TS, Iglesias A, Hess D, Meins F, Boller T (2001) Directed proteomics identifies a plant-specific protein rapidly phosphorylated in response to bacterial and fungal elicitors. Plant Cell 13:1467–1475

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Perumalsamy S, Bharani M, Sudha M, Nagarajan, Arul L, Saraswathi R, Balasubramanian P, Ramalingam J (2010) Functional marker-assisted selection for bacterial leaf blight resistance genes in rice (Oryza sativa L.). Plant Breed 129(4):400–406

    CAS  Google Scholar 

  • Peters RJ (2006) Uncovering the complex metabolic network underlying diterpenoid phytoalexin biosynthesis in rice and other cereal crop plants. Phytochemistry 67:2307–2317

    Article  CAS  PubMed  Google Scholar 

  • Portis AR Jr (1992) Regulation of ribulose 1,5-bisphosphate carboxylase/oxygenase activity. Annu Rev Plant Physiol Plant Mol Biol 43:415–37

    Article  CAS  Google Scholar 

  • Rakwal R, Agrawal GK, Yonekura M (1999) Separation of proteins from stressed rice (Oryza sativa L.) leaf tissues by two-dimensional polyacrylamide gel electrophoresis: induction of pathogenesis-related and cellular protectant proteins by jasmonic acid, UV irradiation and copper chloride. Electrophoresis 20:3472–3478

    Article  CAS  PubMed  Google Scholar 

  • Rani TS, Podile AR (2014) Extracellular matrix-associated proteome changes during non-host resistance in citrus–Xanthomonas interactions. Physiol Plant 150:565–579

    Article  Google Scholar 

  • Rebecca MD, Patrick AR, Patricia MM, Jan EL (2009) Germins: a diverse protein family important for crop improvement. Plant Sci 77:499–510

    Google Scholar 

  • Riccardi F, Gazeau P, de Vienne D, Zivy M (1998) Protein changes in response to progressive water deficit in maize. Quantitative variation and polypeptide identification. Plant Physiol 117:1253–1263

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ristic Z, Williams G, Yang G, Martin B, Fullerton S (1996) Dehydration, damage to cellular membranes, and heat-shock proteins in maize hybrids from different climates. J Plant Physiol 149:424–432

    Article  CAS  Google Scholar 

  • Ryu HS, Song MY, Kim CY, Han M, Lee SK, Ryoo N, Cho JI, Hahn TR, Jeon JS (2009) Proteomic analysis of rice mutants susceptible to Magnaporthe oryzae. Plant Biotechnol Rep 3:167–174

    Article  Google Scholar 

  • Salekdeh GH, Siopongco HJ, Wade LJ, Ghareyazie B, Bennett J (2002) A proteomics approach to analysing drought and salt responsiveness in rice. Field Crop Res 76:199–219

    Article  Google Scholar 

  • Sengupta D, Kannan M, Reddy AR (2011) A root proteomics-based insight reveals dynamic regulation of root proteins under progressive drought stress and recovery in Vigna radiata (L.) Wilczek. Planta 233:1111–1127

    Article  CAS  PubMed  Google Scholar 

  • Shen S, Jing Y, Kuang T (2003) Proteomics approach to identify wound-response related proteins from rice leaf sheath. Proteomics 3:527–535

    Article  CAS  PubMed  Google Scholar 

  • Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68:850–858

    Article  CAS  PubMed  Google Scholar 

  • Singh GP, Srivastava MK, Singh RM, Singh RV (1977) Variation in quantilative and qualilative losses caused by bacterial blight rice varieties. Indian Phytopathol 30:180–185

    Google Scholar 

  • Singh BN, Mishra RN, Agarwal PK, Goswami M, Nair S, Sopory SK, Reddy MK (2004) A pea chloroplast translation elongation factor that is regulated by abiotic factors. Biochem Biophys Res Commun 320:523–530

    Article  CAS  PubMed  Google Scholar 

  • Spielmeyer W, Ellis M, Robertson M, Ali S, Lenton JR, Chandler PM (2004) Isolation of gibberellin metabolic pathway genes from barley and comparative mapping in barley, wheat and rice. Theor Appl Genet 109:847–855

    Article  CAS  PubMed  Google Scholar 

  • Tanaka S, Yamada K, Yabumoto K, Fujii, Huse A, Tsuj G, Koga H, Dohi K, Mori M, Shiraishi T, O’Connell R, Kubo Y (2007) Saccharomyces cerevisiae SSD1 orthologues are essential for host infection by the ascomycete plant pathogens Colletotrichum lagenarium and Magnaporthe grisea. Mol Microbiol 64:1332–49

    Article  CAS  PubMed  Google Scholar 

  • Tsugane K, Kobayashi K, Niwa Y, Ohba Y, Wada K, Kobayashi H (1999) A recessive Arabidopsis mutant that grows enhanced active oxygen detoxification. Plant Cel l11:1195–1206

    Article  Google Scholar 

  • Umemura K, Ogawa N, Shimura M, Koga J, Usami H, Kono T (2003) Possible role of phytocassane, rice phytoalexin, in disease resistance of rice against the blast fungus Magnaporthe grisea. Biosci Biotechnol Biochem 67:899–902

    Article  CAS  PubMed  Google Scholar 

  • Ventelon-Debout M, Delalande F, Brizard JP, Diemer H, Van Dorsselaer A, Brugidou C (2004) Proteome analysis of cultivar-specific deregulations of Oryza sativa indica and O. sativa japonica cellular suspensions undergoing rice yellow mottle virus infection. Proteomics 4(1):216–25

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Dong L, Zhang Y, Wu W, Deng X, Xue Y (2004) Genome-wide analysis of S-locus F-box-like genes in Arabidopsis thaliana. Plant Mol Biol 56:929–945

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Li X, Li Y (2007) A modified Coomassie brilliant blue staining method at nanogram sensitivity compatible with proteomic analysis. Biotechnol Lett 29:1599–1603

    Article  CAS  PubMed  Google Scholar 

  • Webb KM, Ona I, Bai J, Garrett KA, Mew T, Vera Cruz CM, Leach JE (2010) A benefit of high temperature: increased effectiveness of a rice bacterial blight disease resistance gene. New Phytol 185(2):568–576

    Article  CAS  PubMed  Google Scholar 

  • Wei Y, Zhang Z, Andersen C, Schmelzer E, Gregersen P, Collinge D, Smedegaard-Petersen V, Thordal-Christensen H (1998) An epidermis/papilla-specific oxalate oxidase-like protein in the defense response of barley attacked by the powdery mildew fungus. Plant Mol Biol 36:101–112

    Article  CAS  PubMed  Google Scholar 

  • West G, Inze D, Beemster GTS (2004) Cell cycle modulation in the response of the primary root of Arabidopsis to salt stress. Plant Physiol 135:1050–1058

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wilderman PR, Xu M, Jin Y, Coates RM, Peters RJ (2004) Identification of syn-pimara-7,15-diene synthase reveals functional clustering of terpene synthases involved in rice phytoalexin/allelochemical biosynthesis. Plant Physiol 135:2098–2105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu XL, Liu HY, Wang W, Chen SN, Hu XL et al (2011) Proteomic analysis of seed viability in maize. Acta Physiol Plant 33:181–191

    Article  CAS  Google Scholar 

  • Yan S, Tang Z, Su W, Sun W (2005) Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics 5:235–244

    Article  CAS  PubMed  Google Scholar 

  • Yan SP, Zhang QY, Tang ZC, Su WA, Sun WN (2006) Comparative proteomic analysis provides new insights into chilling stress responses in rice. Mol Cell Proteomics 5:484–496

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Komatsu S (2004) Microarray and proteomic analysis of brassinosteroid and gibberellin-regulated gene and protein expression in rice. Genomics Proteomics Bioinformatics 2:77–83

    CAS  PubMed  Google Scholar 

  • Yara A, Takashi Y, Montllet J-L, Hasagawa M, Shigemi S (2008) Enhancement of disease resistance to Magnaporthe grisea in rice by accumulation of hydroxyl linoleic acid. Biochem Biophys Res Commun 370:344–347

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura S, Yoshimura A, Iwata N, McCouch SR, Abenes ML, Baraoidan MR, Wah Mew T, Nelson RJ (1995) Tagging and combining bacterial blight resistance genes in rice using RAPD and RFLP markers. Mol Breed 1(4):375–387

    Article  CAS  Google Scholar 

  • Yu CL, Yan SP, Wang CC, Hu HT, Sun WN, Yan CQ, Chen JP, Yang L (2008) Pathogenesis-related proteins in somatic hybrid rice induced by bacterial blight. Phytochemistry 69(10):1989–1996

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Collinge D, Thordal-Christensen H (1995) Germin-like oxalate oxidase, a H2O2-producing enzyme, accumulates in barley attacked by the powdery mildew fungus. Plant J 8:139–145

    Article  CAS  Google Scholar 

  • Zhang W, Peumans WJ, Barre A, Astoul CH, Rovira P, Rougé P, Proost P, Truffa-Bachi P, Jalali AA, Van Damme EJ (2000) Isolation and characterization of a jacalin-related mannose-binding lectin from salt-stressed rice (Oryza sativa) plants. Planta 210:970–978

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Tian LH, Zhao JF, Song Y, Zhang CJ, Guo Y (2009) Identification of an apoplastic protein involved in the initial phase of salt stress response in rice root by two-dimensional electrophoresis. Plant Physiol 149:916–928

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zimaro T, Gottig N, Garavaglia BS, Gehring C, Ottado J (2011) Unraveling plant responses to bacterial pathogens through proteomics. J Biomed Biotechnol 2011:1–12

    Article  Google Scholar 

  • Zimmermann G, Baumlein H, Mock H, Himmelbach A, Schweizer P (2006) The multigene family encoding germin-like proteins of barley: regulation and function in basal host resistance. Plant Physiol 142:181–192

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the financial supports received from the Department of Biotechnology (DBT), Ministry of Science and Technology, Government of India under Project No. BT/PR10904/GBD/27/124/2008. The financial support given to the Department of Plant Sciences, University of Hyderabad from the Department of Biotechnology, Govt. of India-funded Centre for Research and Education in Biology and Biotechnology (DBT-CREBB), DST-Fund for Improvement of S&T Infrastructure in Universities and Higher Educational Institutions (DST-FIST, level II support) and University Grants Commission-Special Assistance Programme (UGC-SAP-CAS) are gratefully acknowledged. The authors thank the support received from Directorate of Rice Research, Hyderabad for providing the seed material and Xoo strain DX133. We also thank Prof. A. R. Podile for his critical suggestions and support.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irfan Ahmad Ghazi.

Additional information

The experiments comply with the current laws of the country in which they were performed.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Identification of major differentially expressed foliar proteins from BB-susceptible rice genotype PB1 and highly resistant O. longistaminata during BB infection (DOCX 19 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Bimolata, W., Kannan, M. et al. Comparative proteomics reveals differential induction of both biotic and abiotic stress response associated proteins in rice during Xanthomonas oryzae pv. oryzae infection. Funct Integr Genomics 15, 425–437 (2015). https://doi.org/10.1007/s10142-014-0431-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-014-0431-y

Keywords

Navigation