Skip to main content
Log in

The 172-kb genomic DNA region of the O. rufipogon yld1.1 locus: comparative sequence analysis with O. sativa ssp. japonica and O. sativa ssp. indica

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Common wild rice (Oryza rufipogon) plays an important role by contributing to modern rice breeding. In this paper, we report the sequence and analysis of a 172-kb genomic DNA region of wild rice around the RM5 locus, which is associated with the yield QTL yld1.1. Comparative sequence analysis between orthologous RM5 regions from Oryza sativa ssp. japonica, O. sativa ssp. indica and O. rufipogon revealed a high level of conserved synteny in the content, homology, structure, orientation, and physical distance of all 14 predicted genes. Twelve of the putative genes were supported by matches to proteins with known function, whereas two were predicted by homology to rice and other plant expressed sequence tags or complementary DNAs. The remarkably high level of conservation found in coding, intronic and intergenic regions may indicate high evolutionary selection on the RM5 region. Although our analysis has not defined which gene(s) determine the yld1.1 phenotype, allelic variation and the insertion of transposable elements, among other nucleotide changes, represent potential variation responsible for the yield QTL. However, as suggested previously, two putative receptor-like protein kinase genes remain the key suspects for yld1.1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahn S, Tanksley SD (1993) Comparative linkage maps of the rice and maize genomes. Proc Natl Acad Sci U S A 90:7980–7984

    Article  PubMed  CAS  Google Scholar 

  • Ankeny RA (2003) Sequencing the genome from nematode to human: changing methods, changing science. Endeavour 27:87–92

    Article  PubMed  CAS  Google Scholar 

  • Armstead IP, Turner LB, Farrell M, Skøt L, Gomez P, Montoya T, Donnison IS, King IP, Humphreys MO (2004) Synteny between a major heading-date QTL in perennial ryegrass (Lolium perenne L.) and the Hd3 heading-date locus in rice. Theor Appl Genet 108:822–828

    Article  PubMed  CAS  Google Scholar 

  • Bautista NS, Shimadzutsu K, Teranishi T, Takamatsu S, Kobayashi N, Uchida N, Kamijima O, Ishii T (2000) Rice wild QTL analysis. 4. QTL analysis for several agronomic characters using BC2 population between Oryza rufipogon and O. sativa IR36. Breeding Res 2:132

    Google Scholar 

  • Bautista NS, Solis R, Kamijima O, Ishii T (2001) RAPD, RFLP and SSLP analyses of phylogenetic relationships between cultivated and wild species of rice. Genes Genet Syst 76:71–79

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen JL (2000) Comparative sequence analysis of plant nuclear genomes: microcolinearity and its many exceptions. Plant Cell 12:1021–1029

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen JL, Coleman C, Liu R, Ma J, Ramakrishna W (2004) Consistent over-estimation of gene number in complex plant genomes. Curr Opin Plant Biol 7:732–736

    Article  PubMed  CAS  Google Scholar 

  • Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580

    Article  PubMed  CAS  Google Scholar 

  • Burge C, Karlin S (1997) Prediction of complete gene structures in human genomic DNA. J Mol Biol 268:78–94

    Article  PubMed  CAS  Google Scholar 

  • Caldwell KS, Langridge P, Powell W (2004) Comparative sequence analysis of the region harboring the hardness locus in barley and its colinear region in rice. Plant Physiol 136:3177–3190

    Article  PubMed  CAS  Google Scholar 

  • Chang TT (1976) The origin, evolution, cultivation, dissemination and diversification of Asian and African rices. Euphytica 25:425–441

    Article  Google Scholar 

  • Cheema KK, Bains NS, Mangat GS, Das A, Vikal Y, Brar DS, Khush GS, Singh K (2008) Development of high yielding IR64 × Oryza rufipogon (GriV.) introgression lines and identification of introgressed alien chromosome segments using SSR markers. Euphytica 160:401–409

    Article  CAS  Google Scholar 

  • Chen E, Schlessinger D, Kere J (1993) Ordered shotgun sequencing, a strategy for integrated mapping and sequencing of YAC clones. Genomics 17:651–656

    Article  PubMed  CAS  Google Scholar 

  • Cheng C, Motohashi R, Tsuchimoto S, Fukuta Y, Ohtsubo H, Ohtsubo E (2003) Polyphyletic origin of cultivated rice: based on the interspersion pattern of SINEs. Mol Biol Evol 20:67–75

    Article  PubMed  CAS  Google Scholar 

  • Cho YC, Suh JP, Choi IS, Hong HC, Beak MK, Kang KH, Kim YG, Ahn SN, Choi HC, Hwang HG, Moon HP (2003) QTLs analysis of yield and its related traits in wild rice relative Oryza rufipogon. Treatises Crop Res Korea 4:19–29

    Google Scholar 

  • Devos KM (2005) Updating the ‘Crop Circle’. Curr Opin Plant Biol 8:155–162

    Article  PubMed  CAS  Google Scholar 

  • Devos KM, Gale MD (2000) Genome relationships: the grass model in current research. Plant Cell 12:637–646

    Article  PubMed  CAS  Google Scholar 

  • Dubcovsky J, Ramakrishna W, SanMiguel P, Busso CS, Yan L, Shiloff BA, Bennetzen JL (2001) Comparative sequence analysis of collinear barley and rice bacterial artificial chromosomes. Plant Physiol 125:1342–1353

    Article  PubMed  CAS  Google Scholar 

  • El-Assal S, Alonso-Blanco C, Peeters AJ, Raz V, Koornneef M (2001) A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2. Nat Genet 29:435–440

    Article  CAS  Google Scholar 

  • Engler F, Soderlund C (2002) Software for physical maps. In: Dunham I (ed) Genomic mapping and sequencing. Horizon Press, Genome Technology Series, Norfolk, UK, pp 201–236

    Google Scholar 

  • Feuillet C, Keller B (2002) Comparative genomics in the grass family: molecular characterization of grass genome structure and evolution. Ann Bot 89:3–10

    Article  PubMed  CAS  Google Scholar 

  • Gale MD, Devos KM (1998) Comparative genetics in the grasses. Proc Natl Acad Sci U S A 95:1971–1974

    Article  PubMed  CAS  Google Scholar 

  • Glaszmann JC (1987) Isozymes and classification of Asian rice varieties. Theor Appl Genet 74:21–30

    Article  CAS  Google Scholar 

  • Goff SA, Ricke D, Lan TH et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    Article  PubMed  CAS  Google Scholar 

  • Gu YQ, Coleman-Derr D, Kong XY, Anderson OD (2004) Rapid genome evolution revealed by comparative sequence analysis of orthologous regions from four triticeae genomes. Plant Physiol 135:459–470

    Article  PubMed  CAS  Google Scholar 

  • Hackauf B, Wehling P (2005) Approaching the self-incompatibility locus Z in rye (Secale cereale L.) via comparative genetics. Theor Appl Genet 110:832–845

    Article  PubMed  CAS  Google Scholar 

  • Han B, Xue Y (2003) Genome-wide intraspecific DNA sequence variations in rice. Curr Opin Plant Biol 6:134–138

    Article  PubMed  CAS  Google Scholar 

  • He G, Luo X, Tian F, Li K, Zhu Z, Su W, Qian X, Fu Y, Wang X, Sun C, Yang J (2006) Haplotype variation in structure and expression of a gene cluster associated with a quantitative trait locus for improved yield in rice. Genome Res 16:618–626

    Article  PubMed  CAS  Google Scholar 

  • Ishii T, Terachi T, Tsunewaki K (1988) Restriction endonuclease analysis of chloroplast DNA from A-genome diploid species of rice. Jpn J Genet 63:523–536

    Article  Google Scholar 

  • Ishii T, Xu Y, McCouch SR (2001) Nuclear- and chloroplast-microsatellite variation in A-genome species of rice. Genome 44:658–666

    Article  PubMed  CAS  Google Scholar 

  • Jabbari K, Cruveiller S, Clay O, Le Saux J, Bernardi G (2004) The new genes of rice: a closer look. Trends Plant Sci 9:281–285

    Article  PubMed  CAS  Google Scholar 

  • Jurka J (1997) Repbase Update Genetic Information Research Institute (on-line). http://www.girinst.org/Repbase_Update.html (8 Aug 2005)

  • Keller B, Feuillet C (2000) Colinearity and gene density in grass genomes. Trends Plant Sci 5:246–251

    Article  PubMed  CAS  Google Scholar 

  • Kellogg EA, Bennetzen JR (2004) The evolution of nuclear genome structure in seed plants. Am J Bot 91:1709–1725

    Article  CAS  Google Scholar 

  • Khush GS (1997) Origin, dispersal, cultivation and variation of rice. Plant Mol Biol 35:25–34, 153

    Google Scholar 

  • Kikuchi S, Satoh K, Nagata T, et al. (2003) Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science 301:376–379

    Article  PubMed  Google Scholar 

  • Li J, Thomson M, McCouch SR (2004) Fine mapping of a grain-weight quantitative trait locus in the pericentromeric region of rice chromosome 3. Genetics 168:2187–2195

    Article  PubMed  CAS  Google Scholar 

  • Li L, Strahwald J, Hofferbert HR, Lübeck J, Tacke E, Junghans H, Wunder J, Gebhardt C (2005) DNA variation at the invertase locus invGE/GF is associated with tuber quality traits in populations of potato breeding clones. Genetics 170:813–821

    Article  PubMed  CAS  Google Scholar 

  • Liang F, Deng Q, Wang Y, Xiong Y, Jin D, Li J, Wang B (2004) Molecular marker-assisted selection for yield-enhancing genes in the progeny of “9311×O. rufipogon” using SSR. Euphytica 139:159–165

    Article  CAS  Google Scholar 

  • Lin H, Liang ZW, Sasaki T, Yano M (2003) Fine mapping and characterization of quantitative trait loci Hd4 and Hd5 controlling heading date in rice. Breed Sci 53:51–59

    Article  CAS  Google Scholar 

  • Lukashin AV, Borodovsky M (1998) GeneMark.hmm: new solutions for gene finding. Nucleic Acids Res 26:1107–1115

    Article  PubMed  CAS  Google Scholar 

  • Ma J, Bennetzen JL (2004) Rapid recent growth and divergence of rice nuclear genomes. P Natl Acad Sci U S A 101:12404–12410

    Article  CAS  Google Scholar 

  • Ma J, SanMiguel P, Lai J, Messing J, Bennetzen JL (2005) DNA Rearrangement in orthologous Orp regions of the maize, rice and sorghum genomes. Genetics 170:1209–1220

    Article  PubMed  CAS  Google Scholar 

  • McCouch SR, Sweeney M, Li J, Jiang H, Thomson M, Septiningsih E, Edwards J, Moncada P, Xiao J, Garris A, Tai T, Martinez C, Tohme J, Sugiono M, McClung A, Yuan LP, Ahn SN (2007) Through the genetic bottleneck: O. rufipogon as a source of trait-enhancing alleles for O. sativa. Euphytica 154:317–339

    Article  CAS  Google Scholar 

  • Menéndez CM, Ritter E, Schäfer-Pregl R, Walkemeier B, Kalde A, Salamini F, Gebhardt C (2002) Cold sweetening in diploid potato: mapping quantitative trait loci and candidate genes. Genetics 162:1423–1434

    PubMed  Google Scholar 

  • Moncada P, Martinez CP, Borrero J, Chatel M, Gauch H Jr, Guimaraes E, Tohme J, McCouch SR (2001) Quantitative trait loci for yield and yield components in an Oryza sativa × Oryza rufipogon BC2F2 population evaluated in an upland environment. Theor Appl Genet 102:41–52

    Article  CAS  Google Scholar 

  • Moore G, Devos K, Wang Z, Gale M (1995) Grasses, line up and form a circle. Curr Biol 5:737–739

    Article  PubMed  CAS  Google Scholar 

  • Nakamura I, Urairong H, Kameya N, Fukuta V, Chitrakon S, Sato YI (1998) Six different plastid subtypes were found in O. sativaO. rufipogon complex. Rice Genet Newsl 15:80–82

    Google Scholar 

  • Nguyen BD, Brar DS, Bui BC, Nguyen TV, Pham LN, Nguyen HT (2003) Identification and mapping of the QTL for aluminum tolerance introgressed from the new source, Oryza rufipogon Griff, into indica rice (Oryza sativa L.). Theor Appl Genet 106:583–593

    PubMed  CAS  Google Scholar 

  • Oka HI (1974) Experimental studies on the origin of cultivated rice. Genetics 78:475–486

    PubMed  Google Scholar 

  • Park YJ, Dixit A, Yoo JW, Bennetzen J (2004) Further evidence of microcolinearity between barley and rice genomes at two orthologous regions. Mol Cells 17:492–502

    PubMed  CAS  Google Scholar 

  • Ramakrishna W, Dubcovsky J, Park YJ, Busso C, Emberton J et al (2002) Different types and rates of genome evolution detected by comparative sequence analysis of orthologous segments from four cereal genomes. Genetics 162:1389–1400

    PubMed  CAS  Google Scholar 

  • Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, Barrell B (2000) Artemis: sequence visualisation and annotation. Bioinformatics 16:944–945

    Article  PubMed  CAS  Google Scholar 

  • Sakata, K, Nagasaki, H, Idonuma, A, Waki, K, Kise, M, Sasaki, T (1999) A computer program for prediction of gene domain on rice genome sequence. The 2nd Georgia Tech International Conference on Bioinformatics, Abstracts p.78, Nov. 1999

  • Sakata K, Nagamura Y, Numa H, Antoniol BA, Nagasaki H, Idonumal A, Watanabe W, Shimizu Y, Horiuchi I, Matsumoto T, Sasaki T, Higo K (2002) RiceGAAS: an annotation system and database for rice genome sequence. Nucleic Acids Res 30:98–102

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Second G (1982) Origin of the genetic diversity of cultivated rice (Oryza ssp.): study of the polymorphism scored at 40 isozyme loci. Jpn J Genet 57:25–57

    Article  Google Scholar 

  • Septiningsih EM, Prasetiyono J, Lubis E, Tai TH, Tjubaryat T, Moeljopawiro S, McCouch SR (2003a) Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor Appl Genet 107:1419–1432

    Article  PubMed  CAS  Google Scholar 

  • Septiningsih EM, Trijatmiko KR, Moeljopawiro S, McCouch SR (2003b) Identification of quantitative trait loci for grain quality in an advance backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor Appl Genet 107:1433–1411

    Article  PubMed  CAS  Google Scholar 

  • Smit AF, Riggs AD (1996) Tiggers and DNA transposon fossils in the human genome. P Natl Acad Sci U S A 93:1443–1448

    Article  CAS  Google Scholar 

  • Song R, Llaca V, Messing J (2002) Mosaic organization of orthologous sequences in grass genome. Genome Res 12:1549–1555

    Article  PubMed  CAS  Google Scholar 

  • Song BK, Nadarajah K, Romanov MN, Ratnam W (2005) Cross-species bacterial artificial chromosome (BAC) library screening via overgo-based hybridization and BAC-contig mapping of a yield enhancement quantitative trait locus (QTL) yld1.1 in the Malaysian wild rice Oryza rufipogon. Cell Mol Biol Lett 10:425–437

    PubMed  CAS  Google Scholar 

  • Sonnhammer ELL, Durbin R (1995) A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene 167:GC1–GC10

    Article  PubMed  CAS  Google Scholar 

  • Swigoňová Z, Bennetzen JL, Messing J (2005) Structure and evolution of the r/b chromosomal regions in rice maize and sorghum. Genetics 169:891–906

    Article  PubMed  Google Scholar 

  • Temnykh S, Park WD, Ayres N, Cartinhour S, Hauck N, Lipovich L, Cho YG, Ishii T, McCouch SR (2000) Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor Appl Genet 100:697–712

    Article  CAS  Google Scholar 

  • Thomson MJ, Tai TH, McClung AM, Lai XH, Hinga ME, Lobos KB, Xu Y, Martinez CP, McCouch SR (2003) Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet 107:479–493

    Article  PubMed  CAS  Google Scholar 

  • Tikhonov AP, SanMiguel PJ, Nakajima Y, Gorenstein NM, Bennetzen JL, Avramova Z (1999) Colinearity and its exceptions in orthologous adh regions of maize and sorghum. Proc Natl Acad Sci U S A 96:7409–7414

    Article  PubMed  CAS  Google Scholar 

  • Turner A, Beales J, Faure S, Dunford RP, Laurie DA (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310:1031–1034

    Article  PubMed  CAS  Google Scholar 

  • Utami DW, Moeljopawiro S, Septiningsih EM, Aswidinnoor H, Sujiprihati S (2001) Introgression of blast resistance characters from the wild rice Oryza rufipogon into IR64 variety. (in Indonesian). J Biotek Pertan 6:51–58

    Google Scholar 

  • Vignols F, Lund G, Pammi S, Tremousaygue D, Grellet F, Kader CJ, Puigdomenech P, Delseny M (1994) Characterization of a rice gene coding for a lipid transfer protein. Gene 142:265–270

    Article  PubMed  CAS  Google Scholar 

  • Vitte C, Panaud O (2003) Formation of solo-LTRs through unequal homologous recombination counterbalances amplifications of LTR retrotransposons in rice Oryza sativa L. Mol Biol Evol 20:528–540

    Article  PubMed  CAS  Google Scholar 

  • Vitte C, Ishii T, Lamy F, Brar D, Panaud O (2004) Genomic paleontology provides evidence for two distinct origins of Asian rice (Oryza sativa L.). Mol Genet Genomics 272:504–511

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Dooner HK (2006) Remarkable variation in maize genome structure inferred from haplotype diversity at the bz locus. Proc Natl Acad Sci U S A 103:17644–17649

    Article  PubMed  CAS  Google Scholar 

  • Wissuwa M, Yano M, Ae N (1998) Mapping of QTLs for phosphorus-deficiency tolerance in rice (Oryza sativa L.). Theor Appl Genet 97:777–783

    Article  CAS  Google Scholar 

  • Wissuwa M, Wegner J, Ae N, Yano M (2002) Substitution mapping of Pup1: a major QTL increasing phosphorus uptake of rice from a phosphorus-deficient soil. Theor Appl Genet 105:890–897

    Article  PubMed  CAS  Google Scholar 

  • Xiao J, Li J, Grandillo S, Ahn SN, Yuan L, Tanksley SD, McCouch SR (1998) Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics 150:899–909

    PubMed  CAS  Google Scholar 

  • Xie X, Jin F, Song MH, Suh JP, Hwang HG, Kim YG, McCouch SR, Ahn SN (2008) Fine mapping of a yield-enhancing QTL cluster associated with transgressive variation in an Oryza sativa × O. rufipogon cross. Theor Appl Genet 116:613–622

    Article  PubMed  Google Scholar 

  • Yamamoto T, Kuboki Y, Lin SY, Sasaki T, Yano M (1998) Fine mapping of quantitative trait loci Hd-1, Hd-2 and Hd-3 controlling heading date of rice as single Mendelian factors. Theor Appl Genet 97:37–44

    Article  CAS  Google Scholar 

  • Yano M, Harushima Y, Kurata N, Nagamura Y, Minobe Y, Sasaki T (1997) Identification of quantitative trait loci controlling heading date in rice using a high-density linkage map. Theor Appl Genet 95:1025–1032

    Article  CAS  Google Scholar 

  • You FM, Luo MC (2003) GenoProfiler User’s Manual. http://wheat.pw.usda.gov/PhysicalMapping/tools/genoprofiler/manual. Cited 19 Jan 2005

  • Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Wang J, Lin W et al (2005) The Genomes of Oryza sativa: a history of duplications. PLoS Biol 3:266–281

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We specifically thank Dr. Nils Rostoks and other staff in the Scottish Crop Research Institute, Dundee, Scotland for their help and encouragement. This work is supported by the Malaysian Ministry of Science and Technology, grant number IRPA 01-03-03-0001-BTK/ER/001 and the Scottish Executive Environment and Rural Affairs Department.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beng-Kah Song.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Annotation comparison between the GenBank, TIGR and reannotation of the RM5 region in japonica genome and O. rufipogon genome (DOC 278 KB).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, BK., Hein, I., Druka, A. et al. The 172-kb genomic DNA region of the O. rufipogon yld1.1 locus: comparative sequence analysis with O. sativa ssp. japonica and O. sativa ssp. indica . Funct Integr Genomics 9, 97–108 (2009). https://doi.org/10.1007/s10142-008-0091-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-008-0091-x

Keywords

Navigation