Skip to main content
Log in

Pre-hospital emergency medicine: a spectrum of imaging findings

  • Review Article
  • Published:
Emergency Radiology Aims and scope Submit manuscript

Abstract

The goal of emergency medical services (EMS) is to provide urgent medical care and stabilization prior to patient transport to a healthcare facility for definitive treatment. The number and variety of interventions performed in the field by EMS providers continues to grow as early management of severe injuries and critical illness in the pre-hospital setting has been shown to improve patient outcomes. The sequela of many field interventions, including those associated with airway management, emergent vascular access, cardiopulmonary resuscitation (CPR), patient immobilization, and hemorrhage control may be appreciated on emergency department admission imaging. Attention to these imaging findings is important for the emergency radiologist, who may be the first to identify a malpositioned device or an iatrogenic complication arising from pre-hospital treatment. Recognition of these findings may allow for earlier corrective action to be taken in the acute care setting. This review describes common EMS interventions and their imaging findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. 2021 National EMS Data Report (2023) https://nemsis.org/wp-content/uploads/2022/11/NEMSIS-End-of-Year-Report-2021.pdf. Accessed November 24

  2. ACGME - Accreditation Data System (ADS) (2023) https://apps.acgme.org/ads/Public/ Accessed November 24

  3. Glauser F, Breault S, Rigamonti F, Sotiriadis C, Jouannic AM, Qanadli SD (2017) Tip malposition of peripherally inserted central catheters: a prospective randomized controlled trial to compare bedside insertion to fluoroscopically guided placement. Eur Radiol 27(7):2843–2849. https://doi.org/10.1007/s00330-016-4666-y

    Article  PubMed  Google Scholar 

  4. Erskine B, Bradley P, Joseph T, Yeh S, Clements W (2021) Comparing the accuracy and complications of peripherally inserted central catheter (PICC) placement using fluoroscopic and the blind pushing technique. J Med Radiat Sci 68(4):349–355. https://doi.org/10.1002/jmrs.533

    Article  PubMed  PubMed Central  Google Scholar 

  5. Abood GJ, Davis KA, Esposito TJ, Luchette FA, Gamelli RL (2007) Comparison of routine chest radiograph versus clinician judgment to determine adequate central line placement in critically ill patients. J Trauma 63(1):50–56. https://doi.org/10.1097/TA.0b013e31806bf1a3

    Article  PubMed  Google Scholar 

  6. Hofer L, Corcoran B, Drahos AL, Levin JH, Steenburg SD (2022) Post-mortem computed tomography assessment of medical support device position following fatal trauma: a single-center experience. Emerg Radiol 29(5):887–893. https://doi.org/10.1007/s10140-022-02072-y

    Article  PubMed  Google Scholar 

  7. Lotan E, Portnoy O, Konen E, Simon D, Guranda L (2015) The role of early postmortem CT in the evaluation of support-line misplacement in patients with severe trauma. AJR Am J Roentgenol 204(1):3–7. https://doi.org/10.2214/AJR.14.12796

    Article  PubMed  Google Scholar 

  8. Donatelli J, Gupta A, Santhosh R, Hazelton TR, Nallamshetty L, Macias A, Rojas CA (2015) To breathe or not to breathe: a review of artificial airway placement and related complications. Emerg Radiol 22(2):171–179. https://doi.org/10.1007/s10140-014-1271-8

    Article  PubMed  Google Scholar 

  9. Green DB, Root CW, Drexler IR, Legasto AC, St George J (2017) The King laryngeal tube: a mimic of esophageal intubation in the emergency department. Emerg Radiol 24(6):701–704. https://doi.org/10.1007/s10140-017-1529-z

    Article  PubMed  Google Scholar 

  10. DeVore EK, Redmann A, Howell R, Khosla S (2019) Best practices for emergency surgical airway: a systematic review. Laryngoscope Investig Otolaryngol 4(6):602–608. https://doi.org/10.1002/lio2.314

    Article  PubMed  PubMed Central  Google Scholar 

  11. Brown CA 3rd, Cox K, Hurwitz S, Walls RM (2014) 4,871 emergency airway encounters by air medical providers: a report of the air transport emergency airway management (NEAR VI: A-TEAM) project. West J Emerg Med 15(2):188–193. https://doi.org/10.5811/westjem.2013.11.18549

    Article  PubMed  PubMed Central  Google Scholar 

  12. Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee (2018) Heart Disease and Stroke Statistics-2018 update: a Report from the American Heart Association. Circulation 137(12):e67–e492. https://doi.org/10.1161/CIR.0000000000000558

    Article  PubMed  Google Scholar 

  13. Tsao CW, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee (2023) Heart Disease and Stroke Statistics-2023 update: a Report from the American Heart Association. Circulation 147(8):e93–e621. https://doi.org/10.1161/CIR.0000000000001123

    Article  PubMed  Google Scholar 

  14. Jang SJ, Cha YK, Kim JS, Do HH, Bak SH, Kwack WG (2020) Computed tomographic findings of chest injuries following cardiopulmonary resuscitation: more complications for prolonged chest compressions? Med (Baltim) 99(33):e21685. https://doi.org/10.1097/MD.0000000000021685

    Article  CAS  Google Scholar 

  15. Dunham GM, Perez-Girbes A, Bolster F, Sheehan K, Linnau KF (2018) Use of whole body CT to detect patterns of CPR-related injuries after sudden cardiac arrest. Eur Radiol 28(10):4122–4127. https://doi.org/10.1007/s00330-017-5117-0

    Article  PubMed  Google Scholar 

  16. Miller AC, Rosati SF, Suffredini AF, Schrump DS (2014) A systematic review and pooled analysis of CPR-associated cardiovascular and thoracic injuries. Resuscitation 85(6):724–731. https://doi.org/10.1016/j.resuscitation.2014.01.028

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bartos JA, Frascone RJ, Conterato M, Wesley K, Lick C, Sipprell K, Vuljaj N, Burnett A et al (2020) The Minnesota mobile extracorporeal cardiopulmonary resuscitation consortium for treatment of out-of-hospital refractory ventricular fibrillation: program description, performance, and outcomes. EClinicalMedicine 29–30. https://doi.org/10.1016/j.eclinm.2020.100632

  18. Platenkamp M, Otterspoor LC (2014) Complications of mechanical chest compression devices. Neth Heart J 22(9):404–407. https://doi.org/10.1007/s12471-013-0491-y

    Article  CAS  PubMed  Google Scholar 

  19. Friberg N, Schmidbauer S, Walther C, Englund E (2019) Skeletal and soft tissue injuries after manual and mechanical chest compressions. Eur Heart J Qual Care Clin Outcomes 5(3):259–265. https://doi.org/10.1093/ehjqcco/qcy062

    Article  PubMed  Google Scholar 

  20. Waqar A, Rajput F, Rachwan RJ, Abi-Saab T, Gimelli G (2022) LUCAS compression device-related severe injuries in a series of patients presenting with outside hospital cardiac arrest. J Cardiol Cases 26(6):432–435. https://doi.org/10.1016/j.jccase.2022.09.006

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bugaev N, Breeze JL, Alhazmi M, Anbari HS, Arabian SS, Holewinski S, Rabinovici R (2016) Magnitude of rib fracture displacement predicts opioid requirements. J Trauma Acute Care Surg 81(4):699–704. https://doi.org/10.1097/TA.0000000000001169

    Article  PubMed  PubMed Central  Google Scholar 

  22. Williamson F, Warren J, Cameron CM (2022) Rib fractures in blunt chest trauma: factors that influence daily patient controlled opiate use during acute care. Injury 53(1):145–151. https://doi.org/10.1016/j.injury.2021.08.029

    Article  PubMed  Google Scholar 

  23. Aho JM, Thiels CA, El Khatib MM, Ubl DS, Laan DV, Berns KS, Habermann EB, Zietlow SP, Zielinski MD (2016) Needle thoracostomy: clinical effectiveness is improved using a longer angiocatheter. J Trauma Acute Care Surg 80(2):272–277. https://doi.org/10.1097/TA.0000000000000889

    Article  PubMed  PubMed Central  Google Scholar 

  24. Dominguez KM, Ekeh AP, Tchorz KM, Woods RJ, Walusimbi MS, Saxe JM, McCarthy MC (2013) Is routine tube thoracostomy necessary after prehospital needle decompression for tension pneumothorax? Am J Surg 205(3):329–332 discussion 332. https://doi.org/10.1016/j.amjsurg.2013.01.004

    Article  PubMed  Google Scholar 

  25. Lewis P, Wright C (2015) Saving the critically injured trauma patient: a retrospective analysis of 1000 uses of intraosseous access. Emerg Med J 32(6):463–467. https://doi.org/10.1136/emermed-2014-203588

    Article  PubMed  Google Scholar 

  26. Schindler P, Helfen A, Wildgruber M, Heindel W, Schülke C, Masthoff M (2019) Intraosseous contrast administration for emergency computed tomography: a case-control study. PLoS ONE 14(5):e0217629. https://doi.org/10.1371/journal.pone.0217629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Knuth TE, Paxton JH, Myers D (2011) Intraosseous injection of iodinated computed tomography contrast agent in an adult blunt trauma patient. Ann Emerg Med 57(4):382–386. https://doi.org/10.1016/j.annemergmed.2010.09.025

    Article  PubMed  Google Scholar 

  28. Ahrens KL, Reeder SB, Keevil JG, Tupesis JP (2013) Successful computed tomography angiogram through tibial intraosseous access: a case report. J Emerg Med 45(2):182–185. https://doi.org/10.1016/j.jemermed.2012.11.091

    Article  PubMed  Google Scholar 

  29. Baadh AS, Singh A, Choi A, Baadh PK, Katz DS, Harcke HT (2016) Intraosseous Vascular Access in Radiology: review of clinical status. AJR Am J Roentgenol 207(2):241–247. https://doi.org/10.2214/AJR.15.15784

    Article  PubMed  Google Scholar 

  30. Sundstrøm T, Asbjørnsen H, Habiba S, Sunde GA, Wester K (2014) Prehospital use of cervical collars in trauma patients: a critical review. J Neurotrauma 31(6):531–540. https://doi.org/10.1089/neu.2013.3094

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tatum JM, Dhillon NK, Ko A, Smith EJT, Melo N, Barmparas G, Ley EJ (2017) Refusal of cervical spine immobilization after blunt trauma: implications for initial evaluation and management: a retrospective cohort study. Int J Surg 48:228–231. https://doi.org/10.1016/j.ijsu.2017.11.027

    Article  PubMed  Google Scholar 

  32. Bush L, Brookshire R, Roche B, Johnson A, Cole F, Karmy-Jones R, Long W, Martin MJ (2016) Evaluation of cervical spine clearance by computed Tomographic scan alone in intoxicated patients with Blunt Trauma. JAMA Surg 151(9):807–813. https://doi.org/10.1001/jamasurg.2016.1248

    Article  PubMed  Google Scholar 

  33. Patel MB, Humble SS, Cullinane DC, Day MA, Jawa RS, Devin CJ, Delozier MS et al (2015) Cervical spine collar clearance in the obtunded adult blunt trauma patient: a systematic review and practice management guideline from the Eastern Association for the surgery of Trauma. J Trauma Acute Care Surg 78(2):430–441. https://doi.org/10.1097/TA.0000000000000503

    Article  PubMed  PubMed Central  Google Scholar 

  34. De Lorenzo RA, Olson JE, Boska M, Johnston R, Hamilton GC, Augustine J, Barton R (1996) Optimal positioning for cervical immobilization. Ann Emerg Med 28(3):301–308. https://doi.org/10.1016/s0196-0644(96)70029-x

    Article  PubMed  Google Scholar 

  35. Del Rossi G, Rechtine GR, Conrad BP, Horodyski M (2013) Is sub-occipital padding necessary to maintain optimal alignment of the unstable spine in the prehospital setting? A preliminary report. J Emerg Med 45(3):366–371. https://doi.org/10.1016/j.jemermed.2013.01.042

    Article  PubMed  Google Scholar 

  36. Schulman JE, O’Toole RV, Castillo RC, Manson T, Sciadini MF, Whitney A, Pollak AN, Nascone JW (2010) Pelvic ring fractures are an independent risk factor for death after blunt trauma. J Trauma 68(4):930–934. https://doi.org/10.1097/TA.0b013e3181cb49d1

    Article  PubMed  Google Scholar 

  37. Sathy AK, Starr AJ, Smith WR, Elliott A, Agudelo J, Reinert CM, Minei JP (2009) The effect of pelvic fracture on mortality after trauma: an analysis of 63,000 trauma patients. J Bone Joint Surg Am 91(12):2803–2810. https://doi.org/10.2106/JBJS.H.00598

    Article  PubMed  Google Scholar 

  38. Bonner TJ, Eardley WG, Newell N, Masouros S, Matthews JJ, Gibb I, Clasper JC (2011) Accurate placement of a pelvic binder improves reduction of unstable fractures of the pelvic ring. J Bone Joint Surg Br 93(11):1524–1528. https://doi.org/10.1302/0301-620X.93B11.27023

    Article  CAS  PubMed  Google Scholar 

  39. Williamson F, Coulthard LG, Hacking C, Martin-Dines P (2020) Identifying risk factors for suboptimal pelvic binder placement in major trauma. Injury 51(4):971–977. https://doi.org/10.1016/j.injury.2020.02.099

    Article  CAS  PubMed  Google Scholar 

  40. Mabry RL (2006) Tourniquet use on the battlefield. Mil Med 171(5):352–356. https://doi.org/10.7205/milmed.171.5.352

    Article  PubMed  Google Scholar 

  41. Goodwin T, Moore KN, Pasley JD, Troncoso R Jr, Levy MJ, Goolsby C (2019) From the battlefield to main street: Tourniquet acceptance, use, and translation from the military to civilian settings. J Trauma Acute Care Surg 87(1S Suppl 1):S35–S39. https://doi.org/10.1097/TA.0000000000002198

    Article  PubMed  Google Scholar 

  42. Kue RC, Temin ES, Weiner SG, Gates J, Coleman MH, Fisher J, Dyer S (2015) Tourniquet Use in a Civilian Emergency Medical Services setting: a descriptive analysis of the Boston EMS Experience. Prehosp Emerg Care 19(3):399–404. https://doi.org/10.3109/10903127.2014.995842

    Article  PubMed  Google Scholar 

  43. McCarthy EM, Burns K, Schuster KM, Cone DC (2023) Tourniquet Use in the Prehospital setting. Prehosp Emerg Care 17:1–5. https://doi.org/10.1080/10903127.2023.2240383

    Article  Google Scholar 

  44. Thai AP, Tseng ES, Kishawi SK, Robenstine JC, Ho VP (2023) Prehospital tourniquet application in extremity vascular trauma: improved functional outcomes. Surgery 174(6):1471–1475. https://doi.org/10.1016/j.surg.2023.08.002

    Article  PubMed  Google Scholar 

  45. Mace EH, Maiga AW, Beyene RT, Smith MC, Streams JR, Peetz AB, Dennis BM, Guillamondegui OD, Gondek SP (2024) Vascular imaging immediately after tourniquet removal does not increase vasospasm risk. Injury 55(1):110974. https://doi.org/10.1016/j.injury.2023.110974

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan T. Whitesell.

Ethics declarations

Statements and Declarations

The authors have no relevant financial or non-financial interests related to this work to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Whitesell, R.T., Burnett, A.M., Johnston, S.K. et al. Pre-hospital emergency medicine: a spectrum of imaging findings. Emerg Radiol (2024). https://doi.org/10.1007/s10140-024-02223-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10140-024-02223-3

Keywords

Navigation