Skip to main content
Log in

Transcriptomic Variation of Amphiprion Percula (Lacepède, 1802) in Response to Infection with Cryptocaryon Irritans Brown, 1951

  • Research
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Cryptocaryon irritans (Brown 1951) frequently infect the Pomacentridae fishes causing severe economic losses. However, the anti-C. irritans’ molecular mechanism in these fishes remains largely unknown. To address this issue, we conducted RNA-Seq for C. irrtians-infected gills of the clownfish Amphiprion percula (Lacepède 1802) at the early (day 1) and late (day 3) stages of infection. A total of 1655 differentially expressed genes (DEGs) were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of DEGs showed a vast genetic variation related to the following aspects: ECM-receptor interaction, P13K-Akt signalling, cytokine-cytokine receptor interaction, and endocytosis. During the early phase of infection, key genes involved in ATP production, energy homeostasis, and stress control were abruptly increased. In the late phase, however, acute response molecules of the peripheral nervous system (synaptic transmission and local immunity), metabolic system triggering glycogen synthesis, energy maintenance, and osmoregulation were found to be critical. The highest number of upregulated genes (URGs) recovered during the early phase was included under the ‘biological process’ category, which primarily functions as response to stimuli, signalling, and biological regulation. In the late phase, most of the URGs were related to gene regulation and immune system processes under ‘molecular function’ category. The immune-related URGs of early infection include major histocompatibility complex (MHC) class-II molecules apparently triggering CD4+ T-cell–activated Th responses, and that of late infection include MHC class-1 molecules for the possible culmination of CD8+ T-cell triggered cytotoxicity. The high level of genic single nucleotide polymorphisms (SNPs) identified during the late phase of infection is likely to influence their susceptibility to secondary infection. In summary, the identified DEGs and their related metabolic and immune-related pathways and the SNPs may provide new insights into coordinating the immunological events and improving resistance in Pomacentridae fishes against C. irritans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available in the NCBI repository, [gene ID: PRJNA832516].

References

  • Abram QH, Dixon B, Katzenback BA (2017) Impacts of low temperature on the teleost immune system. Biology 6:39

    Article  PubMed  PubMed Central  Google Scholar 

  • Al-Rasheed A, Handool KO, Alhelli AM, Garba B, Muhialdin BJ, Masomian M, Daud HHM (2020) Assessment of some immune components from the bioactive crude extract derived from the epidermal mucus of climbing perch Anabas testudines. Turk J Fish Aquat Sci 20:755–766

    Article  Google Scholar 

  • Bai JS, Li YW, Deng Y, Huang YQ, He SH, Dai J, Luo XC (2017) Molecular identification and expression analysis of TLR5M and TLR5S from orange-spotted grouper (Epinephelus coioides). Fish Shellfish Immunol 63:97–102

    Article  CAS  PubMed  Google Scholar 

  • Bayne CJ, Gerwick L (2001) The acute phase response and innate immunity of fish. Dev Comp Immunol 25:725–743

    Article  CAS  PubMed  Google Scholar 

  • Boutet A, Schierwater B (Eds) (2021) Handbook of marine model organisms in experimental biology: established and emerging. CRC press

  • Brown EM (1951) A new parasitic protozoan, the causal organism of a white spot disease in marine fish Cryptocaryon irritans gen. and sp. n. (Agenda and abstr. Sci. Meet., Zool. Soc. London, 1950). In Proc Zool Soc London 11:1–2

  • Buonocore F, Randelli E, Trisolino P, Facchiano A, Pascale D, Scapigliati G (2014) Molecular characterization, gene structure and antibacterial activity of a g-type lysozyme from the European sea bass (Dicentrarchus labrax L.). Mol Immunol 62:10–18

    Article  CAS  PubMed  Google Scholar 

  • Burgess PJ, Matthews RA (1995) Cryptocaryon irritans (Ciliophora): acquired protective immunity in the thick-lipped mullet. Fish Shellfish Immunol 5:459–468

    Article  Google Scholar 

  • Cervera L, González-Fernández C, Arizcun M, Cuesta A, Chaves-Pozo E (2022) Severe natural outbreak of Cryptocaryon irritans in gilthead seabream produces leukocyte mobilization and innate immunity at the gill tissue. Int J Mol Sci 23:937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen W, Sun HY, Xie MQ, Bai JS, Zhu XQ, Li AX (2008) Development of specific PCR assays for the detection of Cryptocaryon irritans. Parasitol Res 103:423–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng JX, Xia YQ, Liu YF, Liu PF, Liu Y (2021) Transcriptome analysis in Takifugu rubripes and Dicentrarchus labrax gills during Cryptocaryon irritans infection. J Fish Dis 44:249–262

    Article  CAS  PubMed  Google Scholar 

  • Chi H, Goldstein M, Pichardo A, Wei ZH, Chang WJ, Gong H (2020) Infectivity and genes differentially expressed between young and aging theront cells of the marine fish parasite Cryptocaryon irritans. PLoS ONE 15:e0238167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colorni A (1985) Aspects of the biology of Cryptocaryon irritans and hyposalinity as gilt-head sea bream Sparus aurata. Dis Aquat Org 22:19–22

    Article  Google Scholar 

  • Colorni A, Burgess P (1997) Cryptocaryon irritans Brown 1951, the cause of ‘white spot disease’in marine fish: an update. Aquarium Sci Conserv 1(4):217–238

  • Deng JJ, Xu S, Li YW, Xu DD, Mo ZQ, Li JZ, Luo XC (2020) Role of major histocompatibility complex II antigen-presentation pathway genes in orange-spotted grouper infected with Cryptocaryon irritans. J Fish Dis 43:1541–1552

    Article  CAS  PubMed  Google Scholar 

  • Dickerson HW, Dawe DL (2006) Ichthyophthirius multifiliis and Cryptocaryon irritans (phylum Ciliophora). Fish Diseases and Disorders 1:116–153

    Google Scholar 

  • Ercan MD, Karataş S, Turgay E, Kolukirik M, Ince O, Ince B (2013) Changes in transferrin gene expression in sea bass (Dicentrarchus labrax) challenged with Vibrio anguillarum. Turkish J Vet Anim Sci 37:141–146

    CAS  Google Scholar 

  • Firdaus-Nawi M, Zamri-Saad M (2016) Major components of fish immunity: a review. Pertanika J Trop Agric Sci 39:393–420

    Google Scholar 

  • Freitas-Mesquita AL, Dos-Santos ALA, Meyer-Fernandes JR (2021) Involvement of Leishmania phosphatases in parasite biology and pathogeny. Front Cell Infect Microbiol 11:327

    Article  Google Scholar 

  • Gaji RY, Sharp AK, Brown AM (2021) Protein kinases in Toxoplasma gondii. Int J Parasitol 51:415–429

    Article  CAS  PubMed  Google Scholar 

  • Ganeshamurthy R, Raj MM, Kumar VS, Veerappan N (2014) Effect of copepod parasites Caligus longipedis (Bassett-Smith in 1898) infection in marine ornamental fish Amphiprion percula and Amphiprion clarkia. Int J Fish Aquat Stud 1:173–175

    Google Scholar 

  • Guo HY, Li WF, Zhu KC, Liu BS, Zhang N, Liu B, Yang JW, Zhang DC (2023) Pathology, enzyme activity and immune responses after Cryptocaryon irritans infection of golden pompano Trachinotus ovatus (Linnaeus 1758). J Mar Sci Eng 11:262

    Article  Google Scholar 

  • Hall C, Flores MV, Storm T, Crosier K, Crosier P (2007) The zebrafish lysozyme C promoter drives myeloid-specific expression in transgenic fish. BMC Dev Biol 7:42

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang K, Jiang L, Huang W, Li X, Yuan L, Jiang J, Zhou S, Wang Y, Xie J (2023) Investigating the interplay between Cryptocaryon irritans ectoparasite infection and the immune responses of the head kidney in silver pomfret (Pampus argenteus). Aquaculture, 739780

  • Jiang B, Du JJ, Li YW, Ma P, Hu YZ, Li AX (2019) Transcriptome analysis provides insights into molecular immune mechanisms of rabbitfish Siganus oramin against Cryptocaryon irritans infection. Fish Shellfish Immunol 88:111–116

    Article  CAS  PubMed  Google Scholar 

  • Jiménez-Cantizano RM, Infante C, Martin-Antonio B, Ponce M, Hachero I, Navas JI, Manchado M (2008) Molecular characterization, phylogeny, and expression of c-type and g-type lysozymes in brill (Scophthalmus hombus). Fish Shellfish Immunol 25:57–65

    Article  PubMed  Google Scholar 

  • Jose Priya TA, Sudha K (2020) Molecular remedies against Cryptocaryon irritans Brown 1951—Practical difficulties. Aquac Res 51:3935–3946

    Article  CAS  Google Scholar 

  • Josepriya TA, Chien KH, Lin HY, Huang HN, Wu CJ, Song YL (2015) Immobilisation antigen vaccine adjuvanted by parasitic heat shock protein 70C confers high protection in fish against cryptocaryonosis. Fish Shellfish Immunol 45:517–527

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Gupta S, Mohmad A, Fular A, Parthasarathi BC, Chaubey AK (2021) Molecular tools-advances opportunities and prospects for the control of parasites of veterinary importance. Int J Trop Insect Sci 41:33–42

    Article  PubMed  Google Scholar 

  • Lacepède BGE (1802) Histoire naturelle des poissons: IV. chez Plassan: Paris, France. v. 4: i-xliv + 1-728, Pl. 1-16

  • Lai X, Wu H, Guo W, Li X, Wang J, Duan Y, Zhang P, Huang Z, Li Y, Dong G, Dan X, Mo Z (2023) Vibrio harveyi co-infected with Cryptocaryon irritans to orange-spotted groupers Epinephelus coioides. Fish Shellfish Immunol 108879

  • Li L, Cardoso JCR, Félix RC, Mateus AP, Canário AVM, Power DM (2021) Fish lysozyme gene family evolution and divergent function in early development. Dev Comp Immunol 114:103772

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Jiang B, Mo Z, Li A, Dan X (2022) Cryptocaryon irritans (Brown 1951) is a serious threat to aquaculture of marine fish. Rev Aquac 14:218–236

    Article  Google Scholar 

  • Li YW, Luo XC, Dan XM, Huang XZ, Qiao W, Zhong ZP, Li AX (2011) Orange-spotted grouper (Epinephelus coioides) TLR2, MyD88 and IL-1β involved in anti-Cryptocaryon irritans response. Fish Shellfish Immunol 30:1230–1240

    Article  CAS  PubMed  Google Scholar 

  • Lin B, Qing X, Liao J, Zhuo K (2020) Role of protein glycosylation in host-pathogen interaction. Cells 9:1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipton AP (1993) Cryptocaryon irritans (Protozoa: Ciliata) infection among aquarium-held marine ornamental fish and its control. Current Science (bangalore) 65:571–572

    Google Scholar 

  • Lokanathan Y, Mohd-Adnan A, Wan KL, Nathan S (2010) Transcriptome analysis of the Cryptocaryon irritans tomont stage identifies potential genes for the detection and control of cryptocaryonosis. BMC Genom 11:1–15

    Article  Google Scholar 

  • Manjili A (2015) Amyloodinium ocellatum (Brown 1931) (Dinoflagellata) infestations in ornamental fish (Amphiprion xanthurus) imported into Iran. Veterinary Researches & Biological Products 28:75–78

    Google Scholar 

  • Mo ZQ, Li YW, Wang HQ, Wang JL, Ni LY, Yang M, Dan XM (2016) Comparative transcriptional profile of the fish parasite Cryptocaryon irritans. Parasit Vectors 9:1–12

    Article  Google Scholar 

  • Mo ZQ, Wang JL, Yang M, Ni LY, Wang HQ, Lao GF, Dan XM (2017) Characterisation and expression analysis of grouper (Epinephelus coioides) co-stimulatory molecules CD83 and CD80/86 post Cryptocaryon irritans infection. Fish Shellfish Immunol 67:467–474

    Article  CAS  PubMed  Google Scholar 

  • Mo ZQ, Wu HC, Hu YT, Lu ZJ, Lai XL, Chen HP, He ZC, Luo XC, Li YW, Dan XM (2021) Transcriptomic analysis reveals innate immune mechanisms of an underlying parasite-resistant grouper hybrid (Epinephelus fuscogutatus× Epinephelus lanceolatus). Fish Shellfish Immunol 119:67–75

    Article  CAS  PubMed  Google Scholar 

  • Mohapatra A, Parida S, Mohanty J, Sahoo PK (2019) Identification and functional characterization of a g-type lysozyme gene of Labeo rohita, an Indian major carp species. Dev Comp Immunol 92:87–98

    Article  CAS  PubMed  Google Scholar 

  • Mohd-Shaharuddin N, Mohd-Adnan A, Kua BC, Nathan S (2013) Expression profile of immune-related genes in Lates calcarifer infected by Cryptocaryon irritans. Fish Shellfish Immunol 34:762–769

    Article  CAS  PubMed  Google Scholar 

  • Nakamoto M, Takeuchi Y, Akita K, Kumagai R, Suzuki J, Koyama T, Sakamoto T (2017) A novel C-type lectin gene is a strong candidate gene for Benedenia disease resistance in Japanese yellowtail Seriola quinqueradiata. Dev Comp Immunol 76:361–369

    Article  CAS  PubMed  Google Scholar 

  • Natnan ME, Low CF, Chong CM, Bunawan H, Baharum SN (2021) Integration of omics tools for understanding the fish immune response due to microbial challenge. Front Mar Sci 8:751

    Article  Google Scholar 

  • Neves JV, Wilson JM, Rodrigues PNS (2009) Transferrin and ferritin response to bacterial infection: the role of liver and brain in fish. Dev Comp Immunol 33:848–857

    Article  CAS  PubMed  Google Scholar 

  • Olivotto I, Planas M, Simões N, Holt GJ, Avella MA, Calado R (2011) Advances in breeding and rearing marine ornamentals. J World Aquaculture Soc 42:135–166

    Article  Google Scholar 

  • Park JI, Semyonov J, Chang CL, Hsu SYT (2005) Conservation of the heterodimeric glycoprotein hormone subunit family proteins and the LGR signalling system from nematodes to humans. Endocrine 26:267–276

    Article  CAS  PubMed  Google Scholar 

  • Parveen S, Bandhyopadhyay S, Das S, Majumdar SB, Jawed JJ, Chowdhury BP, Majumdar S (2016) Mycobacterium indicus pranii (Mw)-mediated protection against visceral leishmaniasis by reciprocal regulation of host dual-specificity phosphatases. Int Immunol 28:585–595

    Article  CAS  PubMed  Google Scholar 

  • Peatman E, Baoprasertkul P, Terhune J, Xu P, Nandi S, Kucuktas H, Li P, Wang S, Somridhivej B, Dunham R, Liu Z (2007) Expression analysis of the acute phase response in channel catfish (Ictalurus punctatus) after infection with a Gram-negative bacterium. Dev Comp Immunol 31:1183–1196

    Article  CAS  PubMed  Google Scholar 

  • Priya TJ, Lin YH, Wang YC, Yang CS, Chang PS, Song YL (2012) Codon changed immobilisation antigen (iAg) a potent DNA vaccine in fish against Cryptocaryon irritans infection. Vaccine 30:893–903

    Article  Google Scholar 

  • Ramudu KR, Sanil NK, Vijayagopal P, Shivam S, Suresh Babu PP, Anuraj A, Loka J (2017) Report on Amyloodinium spp cysts infection in clownfish. Mar Fish Inf Serv, Tech Ext Ser (234):25–26

  • Rodrigues RM, Silva NM, Gonçalves ALR, Cardoso CR, Alves R, Gonçalves FA, Costa‐Cruz JM (2009) Major histocompatibility complex (MHC) class II but not MHC class I molecules are required for efficient control of Strongyloides venezuelensis infection in mice. Immunology 128(1pt2):e432–e441

  • Rombout JH, Huttenhuis HB, Picchietti S, Scapigliati G (2005) Phylogeny and ontogeny of fish leucocytes. Fish Shellfish Immunol 19:441–455

    Article  CAS  PubMed  Google Scholar 

  • Romo RM, Pérez-Martínez D, Ferrer CC (2016) Innate immunity in vertebrates: an overview. Immunology 148:125–139

    Article  Google Scholar 

  • Ropert C, Gazzinelli RT (2000) Signalling of immune system cells by glycosylphosphatidylinositol (GPI) anchor and related structures derived from parasitic protozoa. Curr Opin Microbiol 3:395–403

    Article  CAS  PubMed  Google Scholar 

  • Roy S, Kumar V, Kumar V, Behera BK (2017) Acute phase proteins and their potential role as an indicator for fish health and in diagnosis of fish diseases. Protein Pept Lett 24:78–89

    Article  CAS  PubMed  Google Scholar 

  • Rudd PM, Elliott T, Cresswell P, Wilson IA, Dwek RA (2001) Glycosylation and the immune system. Science 291:2370–2376

    Article  CAS  PubMed  Google Scholar 

  • Saurabh S, Sahoo PK (2008) Lysozyme: an important defence molecule of fish innate immune system. Aquac Res 39:223–239

    Article  CAS  Google Scholar 

  • Singh SB, Davis AS, Taylor GA, Deretic V (2006) Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science 313:1438–1441

    Article  CAS  PubMed  Google Scholar 

  • Subramanian S, MacKinnon SL, Ross NW (2007) A comparative study on innate immune parameters in the epidermal mucus of various fish species. Comp Biochem Physiol B: Biochem Mol Biol 148:256–263

    Article  PubMed  Google Scholar 

  • Sudhagar A, Kumar G, El-Matbouli M (2018) Transcriptome analysis based on RNA-Seq in understanding pathogenic mechanisms of diseases and the immune system of fish: a comprehensive review. Int J Mol Sci 19:245

    Article  PubMed  PubMed Central  Google Scholar 

  • Sufardin S, Sriwulan S, Anshary H (2022) Gyrodactylus (Monogenea: Gyrodactylidae) on marine ornamental fish Amphiprion percula from a marine aquaculture facility in Indonesia. Biodiversitas 23(2)

  • Szczypka M (2020) Role of phosphodiesterase 7 (PDE7) in T cell activity effects of selective PDE7 inhibitors and dual PDE4/7 inhibitors on T cell functions. Int J Mol Sci 21:6118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor GA, Collazo CM, Yap GS, Nguyen K, Gregorio TA, Taylor LS, Eagleson B, Secrest L, Southon EA, Reid SW, Tessarollo L (2000) Pathogen-specific loss of host resistance in mice lacking the IFN-γ-inducible gene IGTP. Proc Natl Acad Sci 97:751–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi A, Singha UK, Cooley A, Gillyard T, Krystofiak E, Pratap S, Chaudhuri M (2021) Trypanosoma brucei Tim50 possesses PAP activity and plays a critical role in cell cycle regulation and parasite infectivity. Mbio 12:e01592-e1621

    Article  PubMed  PubMed Central  Google Scholar 

  • Wahab W, Zakariah MI, Mazelan S, Shaharom F (2009) Parasites of marine ornamental fish. Jabatan Perikanan Malaysia

  • Wang P, Wang J, Su YQ, Mao Y, Zhang JS, Wu CW, Zheng WQ (2016) Transcriptome analysis of the Larimichthys crocea liver in response to Cryptocaryon irritans. Fish Shellfish Immunol 48:1–11

    Article  PubMed  Google Scholar 

  • Wright ADG, Colorni A (2002) Taxonomic re-assignment of Cryptocaryon irritans a marine fish parasite. Eur J Protistol 37:375–378

    Article  Google Scholar 

  • Xie X, Jiang Y, Miao R, Huang J, Zhou L, Kong J, Yin F (2021) The gill transcriptome reveals unique antimicrobial features that protect Nibea albiflora from Cryptocaryon irritans infection. J Fish Dis 44:1215–1227

    Article  CAS  PubMed  Google Scholar 

  • Yambot AV, Song YL (2006) Immunization of grouper, Epinephelus coioides, confers protection against a protozoan parasite. Aquac 260:1–9

    Article  CAS  Google Scholar 

  • Yin F, Gao Q, Tang B, Sun P, Han K, Huang W (2016) Transcriptome and analysis on the complement and coagulation cascades pathway of large yellow croaker (Larimichthys crocea) to ciliate ectoparasite Cryptocaryon irritans infection. Fish Shellfish Immunol 50:127–141

    Article  CAS  PubMed  Google Scholar 

  • Yin F, Liu W, Bao P, Jin S, Qian D, Wang J, Tang B (2018) Comparison of the susceptibility and resistance of four marine perciform fishes to Cryptocaryon irritans infection. Fish Shellfish Immunol 77:298–303

    Article  CAS  PubMed  Google Scholar 

  • Yin F, Qian D (2017) Transcriptomic analysis reveals the key immune-related signalling pathways of Sebastiscus marmoratus in response to infection with the parasitic ciliate Cryptocaryon irritans. Parasit Vectors 10:1–16

    Article  Google Scholar 

  • Zhao J, Bai H, Ke Q, Li B, Zhou Z, Wang H, Xu P (2021) Genomic selection for parasitic ciliate Cryptocaryon irritans resistance in large yellow croaker. Aquaculture 531:735–786

    Article  Google Scholar 

  • Zheng L, Qiu J, Chen J, Zheng WQ, Pan Y (2020) Histopathological changes and piscidin 5-like location in infected Larimichthys crocea with parasite Cryptocaryon irritans. Fish Shellfish Immunol 99:52–58

    Article  CAS  PubMed  Google Scholar 

  • Zheng LB, Mao Y, Wang J, Chen RN, Su YQ, Hong YQ, Hong YC (2018) Excavating differentially expressed antimicrobial peptides from transcriptome of Larimichthys crocea liver in response to Cryptocaryon irritans. Fish Shellfish Immunol 75:109–114

    Article  CAS  PubMed  Google Scholar 

  • Zhokhov AE, Thi HV, Kieu OLT, Pugacheva MN, Hai TNT (2019) Parasites of Anemonefish (Pomacentridae amphiprioninae) in the Gulf of Nha Trang South China Sea. Vietnam Biol Bull 46:791–803

    Article  CAS  Google Scholar 

  • Zou J, Secombes CJ (2011) Teleost fish interferons and their role in immunity. Dev Comp Immunol 35:1376–1387

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank M/s Eurofins Genomics India Pvt. Ltd., Bengaluru, for sequencing and bioinformatics support. We are very grateful to the Central University of Kerala for providing us the laboratory space and literature resources.

Funding

This study was supported by Department of Science and Technology, Government of India, DST WOS-A research project (No. SR/WOS-A/LS-78/2018 (G), 28.06.2019), DST-RFBR collaborative research project (No. INT/RUS/RFBR/P-330, 10.01.2019), and DST-SERB Research project (No. EMR/2016/001163/AS, 28.08. 2017).

Author information

Authors and Affiliations

Authors

Contributions

Jose Priya TA conceived and designed the project, carried out the experiment, analysed data, and wrote the manuscript; Charutha Karunakaran contributed to sample collection and assisted with data processing; Aishwarya Nath discussed the results and contributed to the final manuscript; Sudha Kappalli did critical reading and editing. All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Jose Priya T. A. or Sudha Kappalli.

Ethics declarations

Ethics Approval

All experiments in this study were conducted according to the guidelines of Institutional Animal Ethics Committee (IAEC), Central University of Kerala.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Infection with Cryptocaryon irritans resulted in a large number of DEGs in the gill tissue of Amphiprion percula.

• At the initial phase of infection, C. irritans induced significant responses on key genes involved in ATP production, energy homeostasis, stress control, and MHC-II-mediated immunity.

• At the late phase, acute responses of local immunity, glycogen metabolism, osmoregulation, and MHC-I-mediated immunity were induced.

• Single nucleotide polymorphisms (SNPs) were estimated to be 1.4-fold higher during the late phase of infection, revealing a higher probability of secondary infection.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

T. A., J., Karunakaran, C., Nath, A. et al. Transcriptomic Variation of Amphiprion Percula (Lacepède, 1802) in Response to Infection with Cryptocaryon Irritans Brown, 1951. Mar Biotechnol 25, 858–890 (2023). https://doi.org/10.1007/s10126-023-10246-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-023-10246-z

Keywords

Navigation