Skip to main content

Advertisement

Log in

Editing of the Luteinizing Hormone Gene to Sterilize Channel Catfish, Ictalurus punctatus, Using a Modified Zinc Finger Nuclease Technology with Electroporation

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Channel catfish (Ictalurus punctatus) is the most important freshwater aquaculture species in the USA. Genetically enhanced fish that are sterile could both profit the catfish industry and reduce potential environmental and ecological risks. As the first step to generate sterile channel catfish, three sets of zinc finger nuclease (ZFN) plasmids targeting the luteinizing hormone (LH) gene were designed and electroporated into one-cell embryos, different concentrations were introduced, and the Cel-I assay was conducted to detect mutations. Channel catfish carrying the mutated LH gene were sterile, as confirmed by DNA sequencing and mating experiments. The overall mutation rate was 19.7 % for 66 channel catfish, and the best treatment was ZFN set 1 at the concentration 25 μg/ml. To our knowledge, this is the first instance of gene editing of fish via plasmid introduction instead of mRNA microinjection. The introduction of the ZFN plasmids may have reduced mosaicism, as mutated individuals were gene edited in every tissue evaluated. Apparently, the plasmids were eventually degraded without integration, as they were not detectable in mutated individuals using PCR. Carp pituitary extract failed to induce spawning and restoration of fertility, indicating the need for developing other hormone therapies to achieve reversal of sterility upon demand. This is the first sterilization achieved using ZFN technology in an aquaculture species and the first successful gene editing of channel catfish. Our results will help understand the roles of the LH gene, purposeful sterilization of teleost fishes, and is a step towards control of domestic, hybrid, exotic, invasive, and transgenic fishes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amano M, Oka Y, Yamanome T, Okuzawa K, Yamamori K (2002) Three GnRH systems in the brain and pituitary of a pleuronectiform fish, the barfin flounder Verasper moseri. Cell Tissue Res 309:323–329

    Article  CAS  PubMed  Google Scholar 

  • Ansai S, Ochiai H, Kanie Y, Kamei Y, Gou Y, Kitano T, Yamamoto T, Kinoshita M (2012) Targeted disruption of exogenous EGFP gene in medaka using zinc-finger nucleases. Develop Growth Differ 54:546–556

    Article  CAS  Google Scholar 

  • Bart A, Dunham R (1996) Effects of sperm concentration and egg number on fertilization efficiency with channel catfish (Ictalurus punctatus) eggs and blue catfish (I. furcatus) spermatozoa. Theriogenology 45:673–682

    Article  CAS  PubMed  Google Scholar 

  • Beumer KJ, Trautman JK, Bozas A, Liu JL, Rutter J, Gall JG, Carroll D (2008) Efficient gene targeting in Drosophila by direct embryo injection with zinc-finger nucleases. Proc Natl Acad Sci U S A 105:19821–19826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bibikova M, Golic M, Golic KG, Carroll D (2002) Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161:1169–1175

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carbery ID, Ji D, Harrington A, Brown V, Weinstein EJ, Liaw L, Cui X (2010) Targeted genome modification in mice using zinc-finger nucleases. Genetics 186:451–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cathomen T, Joung JK (2008) Zinc-finger nucleases: the next generation emerges. Mol Ther 16:1200–1207

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Oikonomou G, Chiu CN, Niles BJ, Liu J, Lee DA, Antoshechkin I, Prober DA (2013) A large-scale in vivo analysis reveals that TALENs are significantly more mutagenic than ZFNs generated using context-dependent assembly. Nucleic Acids Res 41:2769–2778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collares T, Campos VF, Seixas FK, Cavalcanti PV, Dellagostin OA, Moreira HLM, Deschamps JC (2010) Transgene transmission in South American catfish (Rhamdia quelen) larvae by sperm-mediated gene transfer. J Biosci 35:39–47

    Article  CAS  PubMed  Google Scholar 

  • Cornu TI, Thibodeau-Beganny S, Guhl E, Alwin S, Eichtinger M, Joung J, Cathomen T (2008) DNA-binding specificity is a major determinant of the activity and toxicity of zinc-finger nucleases. Mol Ther 16:352–358

    Article  CAS  PubMed  Google Scholar 

  • Cui X, Ji D, Fisher DA, Wu Y, Briner DM, Weinstein EJ (2011) Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nat Biotechnol 29:64–67

    Article  CAS  PubMed  Google Scholar 

  • Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, Katibah GE, Amora R, Hocking TD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Amacher SL (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 26:702–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunham RA (2011) Aquaculture and fisheries biotechnology: genetic approaches. CABI Publishing Wallingford, Oxfordshire

    Book  Google Scholar 

  • Dunham RA, Smitherman RO (1984) Ancestry and breeding of catfish in the United States. Alabama Agricultural Experiment Station, Auburn University, Alabama

    Google Scholar 

  • Dunham RA, Winn RN (2014) Production of transgenic fish. In: Pinkert CA (ed) Transgenic animal technology: a laboratory handbook, 3rd edn. Elsevier B.V, Amsterdam, pp 308–336

    Google Scholar 

  • Dunham RA, Majumdar K, Hallerman E, Bartley D, Mair G, Hulata G, Liu Z, Pongthana N, Bakos J, Penman D (2000) Review of the status of aquaculture genetics. Aquaculture in the Third Millennium: Technical Proceedings of the Conference on Aquaculture in the Third Millennium, Bangkok, Thailand. http://www.fao.org/3/a-ab412e/ab412e03.htm. Accessed 25 Nov 2015

  • Flisikowska T, Thorey IS, Offner S, Ros F, Lifke V, Zeitler B, Rottmann O, Vincent A, Zhang L, Jenkins S (2011) Efficient immunoglobulin gene disruption and targeted replacement in rabbit using zinc finger nucleases. PLoS One 6:e21045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foley JE, Yeh JRJ, Maeder ML, Reyon D, Sander JD, Peterson RT, Joung JK (2009) Rapid mutation of endogenous zebrafish genes using zinc finger nucleases made by Oligomerized Pool ENgineering (OPEN). PLoS One 4:e4348

    Article  PubMed  PubMed Central  Google Scholar 

  • Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, Jenkins SS, Wood A, Cui X, Meng X (2009) Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325:433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta A, Meng X, Zhu LJ, Lawson ND, Wolfe SA (2011) Zinc finger protein-dependent and -independent contributions to the in vivo off-target activity of zinc finger nucleases. Nucleic Acids Res 39:381–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta A, Christensen RG, Rayla AL, Lakshmanan A, Stormo GD, Wolfe SA (2012) An optimized two-finger archive for ZFN-mediated gene targeting. Nat Methods 9:588–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanson T, Sites D (2012) 2011 US catfish database. http://www.aaes.auburn.edu/comm/pubs/fisheries/fish_5.pdf. Accessed 25 Nov 2015

  • Hanson T, Sites D (2013) 2012 US catfish database. http://www.aces.edu/dept/fisheries/aquaculture/catfish-database/2012-catfish/2012-catfish-database1.pdf. Accessed 25 Nov 2015

  • Hassin S, Claire M, Holland H, Zohar Y (2000) Early maturity in the male striped bass, Morone saxatilis: follicle-stimulating hormone and luteinizing hormone gene expression and their regulation by gonadotropin-releasing hormone analogue and testosterone. Biol Reprod 63:1691–1697

    Article  CAS  PubMed  Google Scholar 

  • Hsu SY, Nakabayashi K, Bhalla A (2002) Evolution of glycoprotein hormone subunit genes in bilateral metazoa: identification of two novel human glycoprotein hormone subunit family genes, GPA2 and GPB5. Mol Endocrinol 16:1538–1551

    Article  CAS  PubMed  Google Scholar 

  • Kagawa H, Iinuma N, Tanaka H, Ohta H, Okuzawa K (1998a) Effects of rearing period in seawater on Induced maturation in female Japanese eel Anguilla japonica. Fish Sci 64:77–82

    CAS  Google Scholar 

  • Kagawa H, Tanaka H, Okuzawa K, Kobayashi M (1998b) GTH II but not GTH I induces final maturation and the development of maturational competence of oocytes of red seabream in vitro. Gen Comp Endocrinol 112:80–88

    Article  CAS  PubMed  Google Scholar 

  • Kagawa H, Gen K, Okuzawa K, Tanaka H (2003) Effects of luteinizing hormone and follicle-stimulating hormone and insulin-like growth factor-I on aromatase activity and P450 aromatase gene expression in the ovarian follicles of red seabream, Pagrus major. Biol Reprod 68:1562–1568

    Article  CAS  PubMed  Google Scholar 

  • Kajimura S, Yoshiura Y, Suzuki M, Utoh T, Horie N, Oka H, Aida K (2001) Changes in the levels of mRNA coding for gonadotropin Iβ and IIβ subunits during vitellogenesis in the common Japanese conger Conger myriaster. Fish Sci 67:1053–1062

    Article  Google Scholar 

  • Kang J-H, Yoshizaki G, Homma O, Strüssmann CA, Takashima F (1999) Effect of an osmotic differential on the efficiency of gene transfer by electroporation of fish spermatozoa. Aquaculture 173:297–307

    Article  CAS  Google Scholar 

  • Kawauchi H, Suzuki K, Nagahama Y, Adachi S, Naito N, Nakai Y, Yoshimura F, Gorbman A (1986) Occurrence of two distinct gonadotropins in chum salmon pituitary. In: Yoshimura F, Gorbman A (eds.) Pars distalis of the pituitary gland-structure, function and regulation, Excerpta Medica, Amsterdam, pp 383–390

  • Kurita K, Burgess SM, Sakai N (2004) Transgenic zebrafish produced by retroviral infection of in vitro-cultured sperm. Proc Natl Acad Sci U S A 101:1263–1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Kim S, Karsi A (2001) Channel catfish follicle-stimulating hormone and luteinizing hormone: complementary DNA cloning and expression during ovulation. Mar Biotechnol 3:590–599

    Article  CAS  PubMed  Google Scholar 

  • Mashimo T, Takizawa A, Voigt B, Yoshimi K, Hiai H, Kuramoto T, Serikawa T (2010) Generation of knockout rats with X-linked severe combined immunodeficiency (X-SCID) using zinc-finger nucleases. PLoS One 5:e8870

    Article  PubMed  PubMed Central  Google Scholar 

  • Mcdonald JH (2014) Handbook of biological statistics, 3rd edn. Sparky House Publishing, Baltimore

    Google Scholar 

  • Meng X, Noyes MB, Zhu LJ, Lawson ND, Wolfe SA (2008) Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol 26:695–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller JC, Holmes MC, Wang J, Guschin DY, Lee YL, Rupniewski I, Beausejour CM, Waite AJ, Wang NS, Kim KA, Gregory PD, Pabo CO, Rebar EJ (2007) An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol 25:778–785

    Article  CAS  PubMed  Google Scholar 

  • Moore FE, Reyon D, Sander JD, Martinez SA, Blackburn JS, Khayter C, Ramirez CL, Joung JK, Langenau DM (2012) Improved somatic mutagenesis in zebrafish using transcription activator-like effector nucleases (TALENs). PLoS One 7:e37877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naito N, Hyodo S, Okumoto N, Urano A, Nakai Y (1991) Differential production and regulation of gonadotropins (GTH I and GTH II) in the pituitary gland of rainbow trout, Oncorhynchus mykiss, during ovarian development. Cell Tissue Res 266:457–467

    Article  CAS  Google Scholar 

  • Nakajima K, Nakajima T, Takase M, Yaoita Y (2012) Generation of albino Xenopus tropicalis using zinc-finger nucleases. Develop Growth Differ 54:777–784

    Article  CAS  Google Scholar 

  • Ochiat H, Fujita K, Suzuki KT, Nishikawa M, Shibata T, Sakamoto N, Yamamoto T (2010) Targeted mutagenesis in the sea urchin embryo using zinc-finger nucleases. Dev Biol 344:487

    Article  Google Scholar 

  • Okada T, Kawazoe I, Kimura S, Sasamoto Y, Aida K, Kawauchi H (1994) Purification and characterization of gonadotropin I and II from pituitary glands of tuna (Thunnus obesus). Int J Pept Protein Res 43:69–80

    Article  CAS  PubMed  Google Scholar 

  • Pattanayak V, Ramirez CL, Joung JK, Liu DR (2011) Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat Methods 8:765–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Pinera P, Ousterout DG, Brown MT, Gersbach CA (2012) Gene targeting to the ROSA26 locus directed by engineered zinc finger nucleases. Nucleic Acids Res 40:3741–3752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierce JG, Parsons TF (1981) Glycoprotein hormones: structure and function. Annu Rev Biochem 50:465–495

    Article  CAS  PubMed  Google Scholar 

  • Planas JV, Swanson P (1995) Maturation-associated changes in the response of the salmon testis to the steroidogenic actions of gonadotropins (GTH I and GTH II) in vitro. Biol Reprod 52:697–704

    Article  CAS  PubMed  Google Scholar 

  • Porteus MH, Baltimore D (2003) Chimeric nucleases stimulate gene targeting in human cells. Science 300:763

    Article  PubMed  Google Scholar 

  • Powers DA, Hereford L, Cole T, Chen TT, Lin C, Kight K, Creech K, Dunham R (1991) Electroporation: a method for transferring genes into the gametes of zebrafish (Brachydanio rerio), channel catfish (Ictalurus punctatus), and common carp (Cyprinus carpio). Mol Mar Biol Biotechnol 1:301–308

    Google Scholar 

  • Redding J, Patino R, Evans D (1993) Reproductive physiology [of fish], CRC marine science series. CRC Press, Boca Raton, pp 503–534

    Google Scholar 

  • Su B (2012) Reproductive confinement of common carp, Cyprinus carpio, and channel catfish, Ictalurus punctatus, via transgenic sterilization. Doctoral Dissertation, Auburn University, Alabama

  • Suzuki K, Kawauchi H, Nagahama Y (1988) Isolation and characterization of two distinct gonadotropins from chum salmon pituitary glands. Gen Comp Endocrinol 71:292–301

    Article  CAS  PubMed  Google Scholar 

  • Swanson P, Suzuki K, Kawauchi H, Dickhoff WW (1991) Isolation and characterization of two coho salmon gonadotropins, GTH I and GTH II. Biol Reprod 44:29–38

    Article  CAS  PubMed  Google Scholar 

  • Taibi A, Mandavawala KP, Noel J, Okoye EV, Milano CR, Martin BL, Sirotkin HI (2013) Zebrafish churchill regulates developmental gene expression and cell migration. Dev Dyn 242:614–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S, Jamieson AC, Porteus MH, Gregory PD, Holmes MC (2005) Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435:646–651

    Article  CAS  PubMed  Google Scholar 

  • Van Der Kraak G, Suzuki K, Peter RE, Itoh H, Kawauchi H (1992) Properties of common carp gonadotropin I and gonadotropin II. Gen Comp Endocrinol 85:217–229

    Article  PubMed  Google Scholar 

  • Weil C, Bougoussa-Houadec M, Gallais C, Itoh S, Sekine S, Valotaire Y (1995) Preliminary evidence suggesting variations of GtH 1 and GtH 2 mRNA levels at different stages of gonadal development in rainbow trout, Oncorhynchus mykiss. Gen Comp Endocrinol 100:327–333

    Article  CAS  PubMed  Google Scholar 

  • Yano A, Guyomard R, Nicol B, Jouanno E, Quillet E, Klopp C, Cabau C, Bouchez O, Fostier A, Guiguen Y (2012) An immune-related gene evolved into the master sex-determining gene in rainbow trout, Oncorhynchus mykiss. Curr Biol 22:1423–1428

    Article  CAS  PubMed  Google Scholar 

  • Yano A, Nicol B, Jouanno E, Guiguen Y (2014) Heritable targeted inactivation of the rainbow trout (Oncorhynchus mykiss) master sex-determining gene using zinc-finger nucleases. Mar Biotechnol 16:243–250

    Article  CAS  PubMed  Google Scholar 

  • Yaron Z, Gur G, Melamed P, Rosenfeld H, Elizur A, Levavi-Sivan B (2003) Regulation of fish gonadotropins. Int Rev Cytol 225:131–185

    Article  CAS  PubMed  Google Scholar 

  • Yoshiura Y, Kobayashi M, Kato Y, Aida K (1997) Molecular cloning of the cDNAs encoding two gonadotropin β subunits (GTH-Iβ and-IIβ) from the goldfish, Carassius auratus. Gen Comp Endocrinol 105:379–389

    Article  CAS  PubMed  Google Scholar 

  • Young JJ, Cherone JM, Doyon Y, Ankoudinova I, Faraji FM, Lee AH, Ngo C, Guschin DY, Paschon DE, Miller JC (2011) Efficient targeted gene disruption in the soma and germ line of the frog Xenopus tropicalis using engineered zinc-finger nucleases. Proc Natl Acad Sci U S A 108:7052–7057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Guan G, Chen J, Naruse K, Hong Y (2014) Parameters and efficiency of direct gene disruption by zinc finger nucleases in medaka embryos. Mar Biotechnol 16:125–134

    Article  CAS  PubMed  Google Scholar 

  • Zohar Y, Munoz-Cueto JA, Elizur A, Kah O (2010) Neuroendocrinology of reproduction in teleost fish. Gen Comp Endocrinol 165:438–455

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This material is based upon work that is supported by the Biotechnology Risk Assessment Grants (BRAG) program from the U.S. Department of Agriculture, under award number 2014-33522-22263, and by the Auburn University-IGP program-Office of Vice President for Research. Zhenkui Qin is supported by a scholarship from the China Scholarship Council (CSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rex A. Dunham.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Z., Li, Y., Su, B. et al. Editing of the Luteinizing Hormone Gene to Sterilize Channel Catfish, Ictalurus punctatus, Using a Modified Zinc Finger Nuclease Technology with Electroporation. Mar Biotechnol 18, 255–263 (2016). https://doi.org/10.1007/s10126-016-9687-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-016-9687-7

Keywords

Navigation