Skip to main content

Gene Editing in Channel Catfish via Double Electroporation of Zinc-Finger Nucleases

  • Protocol
  • First Online:
Zinc Finger Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1867))

Abstract

The traditional approach for gene editing with zinc-finger nucleases (ZFNs) in fish has been microinjection of mRNA. Here, we develop and describe an alternative protocol in which ZFN plasmids are electroporated to channel catfish, Ictalurus punctatus, sperm, and embryos. Briefly, plasmids were propagated to supply a sufficient quantity for electroporation. Sperm cells were prepared in saline solution, electroporated with plasmids, and then used for fertilization. Embryos were incubated with the plasmids before performing electroporation just prior to first cell division. Plasmids were then transcribed and translated by embryonic cells to produce ZFNs for gene editing, resulting in mutated fry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Porteus MH, Carroll D (2005) Gene targeting using zinc finger nucleases. Nat Biotechnol 23:967–973

    Article  CAS  PubMed  Google Scholar 

  2. Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, Katibah GE, Amora R, Hocking TD, Zhang L, Rebar EJ (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 26:702–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Miller JC, Holmes MC, Wang J, Guschin DY, Lee Y-L, Rupniewski I, Beausejour CM, Waite AJ, Wang NS, Kim KA (2007) An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol 25:778–785

    Article  CAS  PubMed  Google Scholar 

  4. Meng X, Noyes MB, Zhu LJ, Lawson ND, Wolfe SA (2008) Targeted gene inactivation in zebrafish using engineered zinc finger nucleases. Nat Biotechnol 26:695–701

    Google Scholar 

  5. Ochiai H, Sakamoto N, Fujita K, Nishikawa M, Suzuki K-i, Matsuura S, Miyamoto T, Sakuma T, Shibata T, Yamamoto T (2012) Zinc-finger nuclease-mediated targeted insertion of reporter genes for quantitative imaging of gene expression in sea urchin embryos. Proc Natl Acad Sci U S A 109:10915–10920

    Article  PubMed  PubMed Central  Google Scholar 

  6. Urnov FD, Miller JC, Ya-Li L, Beausejour CM (2005) Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435:646–651

    Google Scholar 

  7. Sebastiano V, Maeder ML, Angstman JF, Haddad B, Khayter C, Yeo DT, Goodwin MJ, Hawkins JS, Ramirez CL, Batista LF (2011) In situ genetic correction of the sickle cell anemia mutation in human induced pluripotent stem cells using engineered zinc finger nucleases. Stem Cells 29:1717–1726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Qin Z, Li Y, Su B, Cheng Q, Ye Z, Perera DA, Fobes M, Shang M, Dunham RA (2016) Editing of the luteinizing hormone gene to sterilize channel catfish, Ictalurus punctatus, using a modified zinc finger nuclease technology with electroporation. Mar Biotechnol 18:255–263

    Article  CAS  PubMed  Google Scholar 

  9. Dong Z, Ge J, Li K, Xu Z, Liang D, Li J, Li J, Jia W, Li Y, Dong X (2011) Heritable targeted inactivation of myostatin gene in yellow catfish (Pelteobagrus fulvidraco) using engineered zinc finger nucleases. PLoS One 6:e28897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yano A, Nicol B, Jouanno E, Guiguen Y (2014) Heritable targeted inactivation of the rainbow trout (Oncorhynchus mykiss) master sex-determining gene using zinc-finger nucleases. Mar Biotechnol 16:243–250

    Article  CAS  PubMed  Google Scholar 

  11. Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider P (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1:841–845

    Google Scholar 

  12. Dower WJ, Miller JF, Ragsdale CW (1988) High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 16:6127–6145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Holo H, Nes IF (1989) High-frequency transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl Environ Microbiol 55:3119–3123

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Becker DM, Guarente L (1991) High-efficiency transformation of yeast by electroporation. Methods Enzymol 194:182–187

    Article  CAS  PubMed  Google Scholar 

  15. Fromm ME, Taylor LP, Walbot V (1986) Stable transformation of maize after gene transfer by electroporation. Nature 319:791–793

    Article  CAS  PubMed  Google Scholar 

  16. D’Halluin K, Bonne E, Bossut M, De Beuckeleer M, Leemans J (1992) Transgenic maize plants by tissue electroporation. Plant Cell 4:1495–1505

    Article  PubMed  PubMed Central  Google Scholar 

  17. Prausnitz MR, Bose VG, Langer R, Weaver JC (1993) Electroporation of mammalian skin: a mechanism to enhance transdermal drug delivery. Proc Natl Acad Sci U S A 90:10504–10508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chu G, Hayakawa H, Berg P (1987) Electroporation for the efficient transfection of mammalian cells with DNA. Nucleic Acids Res 15:1311–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yarmush ML, Golberg A, Serša G, Kotnik T, Miklavčič D (2014) Electroporation-based technologies for medicine: principles, applications, and challenges. Annu Rev Biomed Eng 16:295–320

    Article  CAS  PubMed  Google Scholar 

  20. Potter H (1988) Electroporation in biology: methods, applications, and instrumentation. Anal Biochem 174:361–373

    Article  CAS  PubMed  Google Scholar 

  21. Jordan CA, Neumann E, Sowers AE (1989) Electroporation and electrofusion in cell biology. Springer Science & Business Media, New York

    Google Scholar 

  22. Kotnik T, Frey W, Sack M, Meglič SH, Peterka M, Miklavčič D (2015) Electroporation-based applications in biotechnology. Trends Biotechnol 33:480–488

    Article  CAS  PubMed  Google Scholar 

  23. Powers DA, Hereford L, Cole T, Chen TT, Lin C, Kight K, Creech K, Dunham R (1991) Electroporation: a method for transferring genes into the gametes of zebrafish (Brachydanio rerio), channel catfish (Ictalurus punctatus), and common carp (Cyprinus carpio). Mol Mar Biol Biotechnol 1:301–308

    Google Scholar 

  24. Dunham RA, Warr GW, Nichols A, Duncan PL, Argue B, Middleton D, Kucuktas H (2002) Enhanced bacterial disease resistance of transgenic channel catfish Ictalurus punctatus possessing cecropin genes. Mar Biotechnol 4:338–344

    Article  CAS  PubMed  Google Scholar 

  25. Inoue K, Yamashita S, Hata J-i, Kabeno S, Asada S, Nagahisa E, Fujita T (1990) Electroporation as a new technique for producing transgenic fish. Cell Differ Dev 29:123–128

    Article  CAS  PubMed  Google Scholar 

  26. Sarmasik A, Warr G, Chen TT (2002) Production of transgenic medaka with increased resistance to bacterial pathogens. Mar Biotechnol 4:310–322

    Article  CAS  PubMed  Google Scholar 

  27. Buono R, Linser P (1992) Transient expression of RSVCAT in transgenic zebrafish made by electroporation. Mol Mar Biol Biotechnol 1:271–275

    PubMed  CAS  Google Scholar 

  28. Lavitrano M, Busnelli M, Cerrito MG, Giovannoni R, Manzini S, Vargiolu A (2005) Sperm-mediated gene transfer. Reprod Fertil Dev 18:19–23

    Article  Google Scholar 

  29. Lu J-K, Fu B-H, Wu J-L, Chen TT (2002) Production of transgenic silver sea bream (Sparus sarba) by different gene transfer methods. Mar Biotechnol 4:328–337

    Article  CAS  PubMed  Google Scholar 

  30. Sin F, Bartley A, Walker S, Sin I, Symonds J, Hawke L, Hopkins C (1993) Gene transfer in Chinook salmon (Oncorhynchus tshawytscha) by electroporating sperm in the presence of pRSV-lacZ DNA. Aquaculture 117:57–69

    Article  CAS  Google Scholar 

  31. Zhong J, Wang Y, Zhu Z (2002) Introduction of the human lactoferrin gene into grass carp (Ctenopharyngodon idellus) to increase resistance against GCH virus. Aquaculture 214:93–101

    Article  CAS  Google Scholar 

  32. Khoo H-W, Ang L-H, Lim H-B, Wong K-Y (1992) Sperm cells as vectors for introducing foreign DNA into zebrafish. Aquaculture 107:1–19

    Article  CAS  Google Scholar 

  33. Tsai H, Tseng F, Liao I (1995) Electroporation of sperm to introduce foreign DNA into the genome of loach (Misgurnus anguillicaudatus). Can J Fish Aquat Sci 52:776–787

    Article  CAS  Google Scholar 

  34. Dunham RA, Winn RN (2014) Production of transgenic fish. In: Pinkert CA (ed) Transgenic animal technology: a laboratory handbook. Elsevier BV, Amsterdam, pp 308–336

    Google Scholar 

  35. Foley JE, Maeder ML, Pearlberg J, Joung JK, Peterson RT, Yeh J-RJ (2009) Targeted mutagenesis in zebrafish using customized zinc finger nucleases. Nat Protoc 4:1855–1868

    Google Scholar 

  36. Treen N, Yoshida K, Sakuma T, Sasaki H, Kawai N, Yamamoto T, Sasakura Y (2014) Tissue-specific and ubiquitous gene knockouts by TALEN electroporation provide new approaches to investigating gene function in Ciona. Development 141:481–487

    Article  CAS  PubMed  Google Scholar 

  37. Liang X, Potter J, Kumar S, Zou Y, Quintanilla R, Sridharan M, Carte J, Chen W, Roark N, Ranganathan S (2015) Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J Biotechnol 208:44–53

    Article  CAS  PubMed  Google Scholar 

  38. Elaswad A, Khalil K, Cline D, Page-McCaw P, Chen W, Michel M, Cone R, Dunham R (2018) Microinjection of CRISPR/Cas9 protein into channel catfish, Ictalurus punctatus, embryos for gene editing. J Vis Exp 131:e56275. doi:10.3791/56275

    Google Scholar 

  39. Elaswad A, Dunham R (2017) Disease reduction in aquaculture with genetic and genomic technology: current and future approaches. Rev Aquacult 0:1–23. https://doi.org/10.1111/raq.12205

  40. Armstrong J, Duhon S, Malacinski G (1989) Raising the axolotl in captivity. In: Armstrong JB, Malacinski GM (eds) Developmental biology of the axolotl. Oxford University Press, New York, pp 220–227

    Google Scholar 

  41. Elaswad A (2016) Genetic technologies for disease resistance research and enhancement in catfish. PhD Dissertation, Auburn University, Alabama, USA

    Google Scholar 

  42. Saksena VP, Riggs CD, Yamamoto K (1961) Early development of the channel catfish. Prog Fish Cult 23:156–161

    Article  Google Scholar 

  43. Zischewski J, Fischer R, Bortesi L (2017) Detection of on-target and off-target mutations generated by CRISPR/Cas9 and other sequence-specific nucleases. Biotechnol Adv 35:95–104

    Article  CAS  PubMed  Google Scholar 

  44. Tsai H-J, Lai C-H, Yang H-S (1997) Sperm as a carrier to introduce an exogenous DNA fragment into the oocyte of Japanese abalone (Haliotis divorsicolor suportexta). Transgenic Res 6:85–95

    Article  CAS  PubMed  Google Scholar 

  45. Hayat M, Joyce CP, Townes TM, Chen TT, Powers DA, Dunham RA (1991) Survival and integration rate of channel catfish and common carp embryos microinjected with DNA at various developmental stages. Aquaculture 99:249–255

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rex A. Dunham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dunham, R.A., Elaswad, A., Qin, Z. (2018). Gene Editing in Channel Catfish via Double Electroporation of Zinc-Finger Nucleases. In: Liu, J. (eds) Zinc Finger Proteins. Methods in Molecular Biology, vol 1867. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8799-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8799-3_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8798-6

  • Online ISBN: 978-1-4939-8799-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics