Skip to main content
Log in

Identification of Quantitative Trait Loci Associated with the Skeletal Deformity LSK complex in Gilthead Seabream (Sparus aurata L.)

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Morphological abnormalities, especially skeletal deformities, are some of the most important problems affecting gilthead seabream (Sparus aurata L.) aquaculture industry. In this study, a QTL analysis for LSK complex deformity in gilthead seabream is reported. LSK complex is a severe deformity consisting of a consecutive repetition of three vertebral deformities: lordosis, scoliosis, and kyphosis. Seventy-eight offspring from six breeders from a mass-spawning were analyzed: five full-sibling families, three maternal, and two paternal half-sibling families. They had shown a significant association with the LSK complex prevalence in a previous segregation analysis. Fish were genotyped using a set of multiplex PCRs (ReMsa1-13), which includes 106 microsatellite markers. Two methods were used to perform the QTL analysis: a linear regression with the GridQTL software and a linear mixed model with the Qxpak software. A total of 18 QTL were identified. Four of them (QTLSK3, 6, 12, and 14), located in LG5, 8, 17, and 20, respectively, were the most solid ones. These QTL were significant at genome level and showed an extremely large effect (>35 %) with both methods. Markers close to the identified QTL showed a strong association with phenotype. Two of these molecular markers (DId-03-T and Bt-14-F) were considered as potential linked-to-this-deformity markers. The detection of these QTL supposes a critical step in the implementation of marker-assisted selection in this species, which could decrease the incidence of this deformity and other related deformities. The identification of these QTL also represents a major step towards the study of the etiology of skeletal deformities in this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Afonso JM, Roo FJ (2007) Anomalías morfológicas en peces cultivados: heredabilidad y selección. In: Espinosa J, Martínez P, Figueras A (eds) Genética y genómica en acuicultura. Consejo Superior De Investigaciones Científicas, Madrid, pp 215–240

    Google Scholar 

  • Afonso JM, Montero D, Robaina L, Astorga N, Izquierdo MS, Ginés R (2000) Association of a lordosis-scoliosis-kyphosis deformity in gilthead seabream (Sparus aurata) with family structure. Fish Physiol Biochem 22:159–163

    Article  CAS  Google Scholar 

  • Afonso JM, Manchado M, Estévez A, Ramis G, Lee-Montero I, Ponce M, Sánchez JA, Armero E, Navarro A, Puertas MA, Borrell Y, García M, Negrín-Báez D, Crespo AM, Blanco G, Mariadolores E, Sánchez JJ, Martín N, Aguilera C, Roo FJ, Zamorano MJ and Toro MA (2012) PROGENSA®: development of a genetic improvement program in gilthead sea bream Sparus aurata L between industry and research centers in Spain. In: Proceedings of AQUA 2012, September 1–5, Prague, Czech Republic

  • Bardon A, Vandeputte M, Dupont-Nivet M, Chavanne H, Haffray P, Vergnet A, Chatain B (2009) What is the heritable component of spinal deformities in the European seabass (Dicentrarchus labrax)? Aquaculture 294:194–201

    Article  Google Scholar 

  • Boglione C, Gisbert E, Gavaia P, Witten PE, Moren M, Fontagné S, Koumoundouros G (2013) Skeletal anomalies in reared European fish larvae and juveniles. Part 2: main typologies, occurrences and causative factors. Rev Aquac 5(suppl 1):S121–S167

    Article  Google Scholar 

  • Boulton K, Tsigenopoulos CS, Massault C, Houston RD, de Koning DJ, Haley CS, Bovenhuis H, Batargias C, Canario AVM, Kotoulas G (2011) QTL affecting morphometric traits and stress response in the gilthead seabream (Sparus aurata). Aquaculture 319:58–66

    Article  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  PubMed Central  Google Scholar 

  • Divanach P, Boglione C, Menu B, Koumoundourus G, Kentouri M, Cataudella S (1996) Abnormalities in finfish mariculture: an overview of the problem, causes and solutions. In: Chatain B, Saroglia M, Sweetan J, Lavens P (eds) International workshop on seabass and seabream culture: problems and prospects. European Aquaculture Society, Oostende, pp 45–66

    Google Scholar 

  • Doerge RW (2002) Mapping and analysis of quantitative trait loci in experimental populations. Nat Rev Genet 3:43–52

    Article  PubMed  CAS  Google Scholar 

  • Dunham (2014) Introduction to genetics in aquaculture XI: the past, present and future of aquaculture genetics. Aquaculture 420–421:S1–S2

  • Ebrahimnezhad H, Modarres Mousavi M, Tabatabaei Naeini A, Bozorgi H (2009) Coincidence of lordosis, kyphosis and scoliosis syndrome (LSK) in parrot cichlid (Cichlasoma). In: Proceedings of 1st International Congress on Aquatic Animal Health Management and Diseases. Tehran (Iran), abstract 1296

  • Franch R, Louro B, Tsalavouta M, Chatziplis D, Tsigenopoulos CS, Sarropoulou E, Antonello J, Magoulas A, Mylonas CC, Babbucci M, Patarnello T, Power DM, Kotoulas G, Bargelloni L (2006) A genetic linkage map of the hermaphrodite teleost fish Sparus aurata L. Genetics 174:851–861

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gorman KF, Christians JK, Parent J, Ahmadi R, Weigel D, Dreyer C, Breden F (2011) A major QTL controls susceptibility to spinal curvature in the curveback guppy. BMC Genet 12:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Hough C (2009) Improving the sustainability of European fish aquaculture by the control of malformations. Ghent University, Belgium

    Google Scholar 

  • Knott SA, Elsen JM, Haley CS (1996) Methods for multiple-marker mapping of quantitative trait loci in half-sib populations. Theor Appl Genet 93:71–80

    Article  PubMed  CAS  Google Scholar 

  • Lee-Montero I, Navarro A, Borrell Y, García-Celdran M, Martín N, Negrín-Báez D, Sánchez JA, Armero E, Berbel C, Zamorano MJ, Sánchez J, Estévez A, Ramis G, Manchado M, Afonso JM (2013) Development of the first standardized panel of two new microsatellites multiplex PCRs for gilthead seabream (Sparus aurata L.). Anim Genet 44:533–546

    Article  PubMed  CAS  Google Scholar 

  • Loukovitis D, Sarropoulou E, Tsigenopoulos CS, Batargias C, Magoulas A, Apostolidis AP, Chatziplis D, Kotoulas G (2011) Quantitative trait loci involved in sex determination and body growth in the gilthead sea bream (Sparus aurata L.) through targeted genome scan. PLoS One 6:e16599

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Loukovitis D, Sarropoulou E, Batargias C, Apostolidis A, Kotoulas G, Tsigenopoulos C, Chatziplis D (2012) Quantitative trait loci for body growth and sex determination in the hermaphrodite teleost fish Sparus aurata L. Anim Genet 43:753–759

    Article  PubMed  CAS  Google Scholar 

  • Loukovitis D, Batargias C, Sarropoulou E, Apostolidis AP, Kotoulas G, Magoulas A, Tsigenopoulos CS, Chatziplis D (2013) Quantitative trait loci affecting morphology traits in gilthead seabream (Sparus aurata L.). Anim Genet 44:480–483

    Article  PubMed  CAS  Google Scholar 

  • Mangin B, Goffinet B, Rebai A (1994) Constructing confidence intervals for QTL location. Genetics 138:1301–1308

    PubMed  CAS  PubMed Central  Google Scholar 

  • Massault C, Bovenhuis H, Haley CS, Koning DJ (2008) QTL mapping designs for aquaculture. Aquaculture 285:1–4

    Article  Google Scholar 

  • Massault C, Hellemans B, Louro B, Batargias C, Van Houdt JKJ, Canario A, Volckaert FAM, Bovenhuis H, Haley C, de Koning DJ (2010) QTL for body weight, morphometric traits and stress response in European seabass Dicentrarchus labrax. Anim Genet 41:337–345

    PubMed  CAS  Google Scholar 

  • Massault C, Franch R, Haley C, De Koning DJ, Bovenhuis H, Pellizzari C, Patarnello T, Bargelloni L (2011) Quantitative trait loci for resistance to fish pasteurellosis in gilthead sea bream (Sparus aurata). Anim Genet 42:191–203

    Article  PubMed  CAS  Google Scholar 

  • Navarro A, Badilla R, Zamorano MJ, Pasamontes V, Hildebrandt S, Sánchez JJ, Afonso JM (2008) Development of two new microsatellite multiplex PCRs for three sparid species: Gilthead seabream (Sparus auratus L.), red porgy (Pagrus pagrus L.) and redbanded seabream (P. auriga, Valenciennes, 1843) and their application to paternity studies. Aquaculture 285:30–37

    Article  CAS  Google Scholar 

  • Negrín-Báez D, Navarro A, Lee-Montero I, Soula M, Afonso JM, Zamorano MJ (2015a) Inheritance of skeletal deformities in gilthead seabream (Sparus aurata) –lack of operculum, lordosis, vertebral fusion, and LSK complex. J Anim Sci 93:53–61

    Article  PubMed  Google Scholar 

  • Negrín-Báez D, Navarro A, Lee-Montero I, Afonso JM, Sánchez JJ, Elalfy IS, Manchado M, Sánchez JA, García-Celdrán M, Zamorano MJ (2015b) A set of 13 multiplex PCRs of specific microsatellite markers as a tool for QTL detection in gilthead seabream (Sparus aurata L.). Aquac Res 46(suppl 1):45–58

    Article  Google Scholar 

  • Nezer C, Moreau L, Wagenaar D, Georges M (2002) Results of a whole genome scan targeting QTL for growth and carcass traits in a Piétrain x Large White intercross. Genet Sel Evol 34:371–387

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ozaki A, Araki K, Okamoto H, Okauchi M, Mushiake K, Yoshida K, Tsuzaki T, Fuji K, Sakamoto T, Okamoto N (2012) Progress of DNA marker-assisted breeding in maricultured finfish. Bull Fish Res Agen (Jpn) 35:31–37

    Google Scholar 

  • Pérez-Enciso M, Misztal I (2004) Qxpak: a versatile mixed model application for genetical genomics and QTL analyses. Bioinformatics 20:2792–2798

    Article  PubMed  Google Scholar 

  • Prestinicola L, Boglione C, Makridis P, Spanò A, Rimatori V, Palamara E, Scardi M, Cataudella S (2013) Environmental conditioning of skeletal anomalies typology and frequency in gilthead seabream (Sparus aurata L.) juveniles. PLoS One 8:e55736

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rodríguez-Ramilo ST, Toro MA, Bouza C, Hermida M, Pardo BG, Cabaleiro S, Martínez P, Fernández J (2011) QTL detection for Aeromonas salmonicida resistance related traits in turbot (Scophthalmus maximus). BMC Genomics 12:541

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Ramilo ST, Martínez P, Fernández J, De La Herrán R, Ruiz-Rejón C, Hermida M, Fernández C, Pereiro P, Figueras A, Bouza C, Toro MA (2014) Identification of quantitative trait loci associated with resistance to viral haemorrhagic septicaemia (VHS) in turbot (Scophthalmus maximus): a comparison between bacterium, parasite and virus diseases. Mar Biotechnol 16:265–276

    Article  PubMed  Google Scholar 

  • Rowe SJ, Windsor D, Haley CS, Burt DW, Hocking PM, Griffin H, Vincent J, De Koning DJ (2006) QTL analysis of body weight and conformation score in commercial broiler chickens using variance component and half-sib analyses. Anim Genet 37:269–272

    Article  PubMed  CAS  Google Scholar 

  • Seaton G, Hernandez J, Grunchec JA, White I, Allen J, de Koning DJ, Wei W, Berry D, Haley C, Knott S (2006) GridQTL: a grid portal for QTL mapping of compute intensive datasets. In: Proceedings of the 8th World Congress on Genetics Applied to Livestock Production. August 13–18, Belo Horizonte

  • Senger F, Priat C, Hitte C, Sarropoulou E, Franch R, Geisler R, Bargelloni L, Power D, Galibert F (2006) The first radiation hybrid map of a perch-like fish: the gilthead seabream (Sparus aurata L). Genomics 87:793–800

    Article  PubMed  CAS  Google Scholar 

  • Vallejo RL, Palti Y, Liu S, Evenhuis JP, Gao G, Rexroad CE III, Wiens GD (2014) Detection of QTL in rainbow trout affecting survival when challenged with Flavobacterium psychrophilum. Mar Biotechnol 16:349–360

    Article  PubMed  CAS  Google Scholar 

  • Visscher PM, Thompson R, Haley CS (1996) Confidence intervals in QTL mapping by bootstrapping. Genetics 143:1013–1020

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wang CM, Lo LC, Zhu ZY, Yue GH (2006) A genome scan for quantitative trait loci affecting growth-related traits in an F1 family of Asian seabass (Lates calcarifer). BMC Genomics 7:274

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu S (2003) Theoretical basis of the Beavis effect. Genetics 165:2259–2268

    PubMed  PubMed Central  Google Scholar 

  • Yue GH (2014) Recent advances of genome mapping and marker-assisted selection in aquaculture. Fish Fish 15:376–396

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Guacimara Alejandro, Sara Rodríguez, and Ivonne Lee for their technical support; to Dionisio Lorenzo for his suggestions and to M. Carmen Rodríguez Valdovinos for her help. This study was supported by the “Search of deformities QTL in gilthead seabream” research project (Plan Nacional de I + D + i). Davinia Negrín-Báez was supported by a grant from the Cabildo Insular de Gran Canaria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María J. Zamorano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Negrín-Báez, D., Navarro, A., Rodríguez-Ramilo, S.T. et al. Identification of Quantitative Trait Loci Associated with the Skeletal Deformity LSK complex in Gilthead Seabream (Sparus aurata L.). Mar Biotechnol 18, 98–106 (2016). https://doi.org/10.1007/s10126-015-9671-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-015-9671-7

Keywords

Navigation