Skip to main content
Log in

Construction of the first high-density genetic map for growth related QTL analysis in Ancherythroculter nigrocauda

  • Aquaculture and Fisheries
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Ancherythroculter nigrocauda is a fish endemic to the upper areas of the Changjiang (Yangtze) River in China. Quantitative trait locus (QTL) mapping is a powerful tool to identify potential genes affecting traits of economic importance in domestic animals. In this study, a high-density genetic map was constructed with 5 901 single nucleotide polymorphism (SNP) makers by sequencing 92 individual fish from a F1 family using the specific-locus amplified fragment sequencing approach. Initially, 48 QTLs for total length, body length, body height, and body weight were identified according to the high density of the genetic map with 24 LGs, a total length of 3 839.4 cM, and marker spacing of about 0.82 cM. These QTLs explained 27.1%–49.9% of phenotypic variance. The results of this study suggest that major QTLs are responsible for the growth of A. nigrocauda, and these are potentially useful in comparative genomics research, genome assembly, and marker-assisted breeding programs for this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

All data generated and/or analyzed during the study are available from the corresponding author on reasonable request.

References

  • Andrews K R, Good J M, Miller M R, Luikart G, Hohenlohe P A. 2016. Harnessing the power of RADseq for ecological and evolutionary genomics. Nat. Rev. Genet., 17(2): 81–92.

    Google Scholar 

  • Bai Z Y, Han X K, Liu X J, Li Q Q, Li J L. 2016. Construction of a high-density genetic map and QTL mapping for pearl quality-related traits in Hyriopsis cumingii. Sci. Rep., 6: 32608.

  • Baird N A, Etter P D, Atwood T S, Currey M C, Shiver A L, Lewis Z A, Selker E U, Cresko W A, Johnson E A. 2008. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoSOne, 3(10): e3376.

    Google Scholar 

  • Chakravarti A, Lasher L K, Reefer J E. 1991. A maximum likelihood method for estimating genome length using genetic linkage data. Genetics, 128(1): 175–182.

    Google Scholar 

  • Davey J W, Hohenlohe P A, Etter P D, Boone J Q, Catchen J M, Blaxter M L. 2011. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat. Rev. Genet., 12(7): 499–510.

    Google Scholar 

  • Dib C, Fauré S, Fizames C, Samson D, Drouot N, Vignal A, Millasseau P, Marc S, Kazan J, Seboun E, Lathrop M, Gyapay G, Morissette J, Weissenbach J. 1996. A comprehensive genetic map of the human genome based on 5264 microsatellites. Nature, 380(6570): 152–154.

    Google Scholar 

  • Faris J D, Laddomada B, Gill B S. 1998. Molecular mapping of segregation distortion loci in Aegilops tauschii. Genetics, 149(1): 319–327.

    Google Scholar 

  • Feng X, Yu X M, Fu B D, Wang X H, Liu HY, Pang M X, Tong J G. 2018. A high-resolution genetic linkage map and QTL fine mapping for growth-related traits and sex in the Yangtze River common carp (Cyprinus carpio haematopterus). BMC Genomics, 19: 230.

    Google Scholar 

  • Fishman L, Kelly A J, Morgan E, Willis J H. 2001. A genetic map in the Mimulus guttatus species complex reveals transmission ratio distortion due to hetero specific interactions. Genetics, 159(4): 1 701–1 716.

    Google Scholar 

  • Fu B D, Liu H Y, Yu X M, Tong J G. 2016. A high-density genetic map and growth related QTL mapping in bighead carp (Hypophthalmichthys nobilis). Sci. Rep., 6: 28 679.

    Google Scholar 

  • Gjedrem T. 2000. Genetic improvement of cold-water fish species. Aquac. Res., 31(1): 25–33.

    Google Scholar 

  • Guo J Q, Li C J, Teng T, Shen F F, Chen Y N, Wang Y F, Pan C L, Ling Q F. 2018. Construction of the first high-density genetic linkage map of pikeperch (Sander lucioperca) using specific length amplified fragment (SLAF) sequencing and QTL analysis of growth-related traits. Aquaculture, 497: 299–305.

    Google Scholar 

  • Huang X H, Zhao Y, Wei X H, Li C Y, Wang A H, Zhao Q, Li W J, Guo Y L, Deng L W, Zhu C R, Fan D L, Lu Y Q, Weng Q J, Liu K Y, Zhou T Y, Jing Y F, Si L Z, Dong G J, Huang T, Lu T T, Feng Q, Qian Q, Li J Y, Han B. 2011. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat. Genet., 44(1): 32–39.

    Google Scholar 

  • Ihara N, Takasuga A, Mizoshita K, Takeda H, Sugimoto M, Mizoguchi Y, Hirano T, Itoh T, Watanabe T, Reed K M, Snelling W M, Kappes S M, Beattie C W, Bennett G L, Sugimoto Y. 2004. A comprehensive genetic map of the cattle genome based on 3802 microsatellites. Genome Res., 14(10A): 1 987–1 998.

    Google Scholar 

  • Jansen J, de Jong A G, van Ooijen J W. 2001. Constructing dense genetic linkage maps. Theor. Appl. Genet., 102: 1 113–1 122.

    Google Scholar 

  • Kosambi D D. 1943. The estimation of map distances from recombination values. Ann. Eugen., 12(1): 172–175.

    Google Scholar 

  • Lallias D, Beaumont A R, Haley C S, Boudry P, Heurtebise S, Lapègue S. 2007. A first-generation genetic linkage map of the European flat oyster Ostreaedulis (L.) based on AFLP and microsatellite markers. Anim. Genet., 38(6): 560–568.

    Google Scholar 

  • Li L, Xiang J H, Liu X, Zhang Y, Dong B, Zhang X J. 2005. Construction of AFLP-based genetic linkage map for Zhikong scallop, Chlamys farreri Jones et Preston and mapping of sex-linked markers. Aquaculture, 245(1–4): 63–73.

    Google Scholar 

  • Li R Q, Li Y R, Kristiansen K, Wang J. 2008. SOAP: short oligonucleotide alignment program. Bioinformatics, 24(5): 713–714.

    Google Scholar 

  • Liu C C, Gao X, Wang H S, Liu H Z, Cao W X, Danley P D. 2013. Reproductive characteristics of Ancherythroculter nigrocauda, an endemic fish in the upper Yangtze River, China. Fisheries Sci., 79(5): 799–806.

    Google Scholar 

  • Liu D Y, Ma C X, Hong W G, Huang L, Liu M, Liu H, Zeng H P, Deng D J, Xin H G, Song J, Xu C H, Sun X W, Hou X L, Wang X W, Zheng H K. 2014. Construction and analysis of high-density linkage map using high-throughput sequencing data. PLoSOne, 9(6): e98855.

    Google Scholar 

  • Liu H Y, Fu B D, Pang M X, Feng X, Yu X M, Tong J G. 2017. A high-density genetic linkage map and QTL fine mapping for body weight in crucian carp (Carassius auratus) using 2b-RAD sequencing. G3, 7(8): 2 473–2 487.

    Google Scholar 

  • Liu J K, Cao W X. 1992. Fish resources of the Yangtze River basin and the tactics for their conservation. Resour. Environ. Yangtze Basin, 1(1): 17–23. (in Chinese with English abstract)

    Google Scholar 

  • Niu D H, Du Y C, Wang Z, Xie S M, Nguyen H, Dong Z G, Shen H D, Li J L. 2017. Construction of the first high-density genetic linkage map and analysis of quantitative trait loci for growth-related traits in Sinonovacula constricta. Mar. Biotechnol., 19(5): 488–496.

    Google Scholar 

  • Peng W Z, Xu J, Zhang Y, Feng J X, Dong C J, Jiang L K, Feng J Y, Chen B H, Gong Y W, Chen L, Xu P. 2016. An ultrahigh density linkage map and QTL mapping for sex and growth-related traits of common carp (Cyprinus carpio). Sci. Rep., 6: 26 693.

    Google Scholar 

  • Peterson B K, Weber J N, Kay E H, Fisher H S, Hoekstra H E. 2012. Double Digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoSOne, 7(5): e37135.

    Google Scholar 

  • Qiu G F, Xiong L W, Han Z K, Liu Z Q, Feng J B, Wu X G, Yan Y L, Shen H, Huang L, Chen L. 2017. A second generation SNP and SSR integrated linkage map and QTL mapping for the Chinese mitten crab Eriocheir sinensis. Sci. Rep., 7: 39 826.

    Google Scholar 

  • Sambrook J, Russell D W. 2001. Molecular Cloning: A Laboratory Manual. 3rd edn. Cold Spring Harbor Laboratory Press, New York. p.463–446.

    Google Scholar 

  • Shao C W, Niu Y C, Rastas P, Liu Y, Xie Z Y, Li H D, Wang L, Jiang Y, Tai S S, Tian Y S, Sakamoto T, Chen S L. 2015. Genome-wide SNP identification for the construction of a high-resolution genetic map of Japanese flounder (Paralichthys olivaceus): applications to QTL mapping of Vibrio anguillarum disease resistance and comparative genomic analysis. DNA Res., 22(2): 161–170.

    Google Scholar 

  • Singer A, Perlman H, Yan Y L, Walker C, Corley-Smith G, Brandhorst B, Postlethwait J. 2002. Sex-specific recombination rates in zebrafish (Danio rerio). Genetics, 160(2): 649–657.

    Google Scholar 

  • Sun C F, Niu Y C, Ye X, Dong J J, Hu W S, Zeng Q K, Chen Z H, Tian Y Y, Zhang J, Lu M X. 2017. Construction of a high-density linkage map and mapping of sex determination and growth-related loci in the mandarin fish (Siniperca chuatsi). BMC Genomics, 18: 446.

    Google Scholar 

  • Sun X W, Liu D Y, Zhang X F, Li W B, Liu H, Hong W G, Jiang C B, Guan N, Ma C X, Zeng H P, Xu C H, Song J, Huang L, Wang C M, Shi J J, Wang R, Zheng X H, Lu C Y, Wang X W, Zheng H K. 2013. SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoSOne, 8(3): e58700.

    Google Scholar 

  • Sun Y H, Li Q, Wang G Y, Zhu D M, Chen J, Li P. 2015. Development of transcript-associated microsatellite markers in Ancherythoculter nigrocauda and cross-amplification in Culter alburnus. Genet. Mol. Res., 14(4): 14 286–14 290.

    Google Scholar 

  • Sun Y H, Li Q, Wei H J, Wang G Y, Chen J, Li P. 2018. Single nucleotide polymorphism identification in growth-related genes from the transcriptome of the fish Ancherythroculter nigrocauda. Conserv. Genet. Resour., 10(2): 153–155.

    Google Scholar 

  • Sun Y H, Wang G Y, Zhu D M, Chen J, Li P, Li Q. 2014. Development of polymorphic microsatellite loci isolated from the Ancherythoculter nigrocauda. Conserv. Genet. Resour., 6(4): 919–923.

    Google Scholar 

  • Tong J G, Sun X W. 2015. Genetic and genomic analyses for economically important traits and their applications in molecular breeding of cultured fish. Sci. China Life Sci., 58(2): 178–186.

    Google Scholar 

  • Van Ooijen J. 2011. Multipoint maximum likelihood mapping in a full-sib family of an outbreeding species. Genet. Res., 93(5): 343–349.

    Google Scholar 

  • Van Os H, Stam P, Visser R G, van Eck H J. 2005. SMOOTH: a statistical method for successful removal of genotyping errors from high-density genetic linkage data. Theor. Appl. Genet., 112(1): 187–194.

    Google Scholar 

  • Voorrips R E. 2002. MapChart: software for the graphical presentation of linkage maps and QTLs. J. Hered., 93(1): 77–78.

    Google Scholar 

  • Wang L, Wan Z Y, Bai B, Huang S Q, Chua E, Lee M, Pang H Y, Wen Y F, Liu P, Liu F, Sun F, Lin G, Ye B Q, Yue G H. 2015. Construction of a high-density linkage map and fine mapping of QTL for growth in Asian seabass. Sci. Rep., 5: 16 358.

    Google Scholar 

  • Wang S, Meyer E, McKay J K, Matz M V. 2012. 2b-RAD: a simple and flexible method for genome-wide genotyping. Nat. Methods, 9(8): 808–810.

    Google Scholar 

  • Xia J H, Lin G, He X P, Yunping B, Liu P, Liu F, Sun F, Tu R J, Yue G H. 2014. Mapping quantitative trait loci for omega-3 fatty acids in Asian seabass. Mar. Biotechnol., 16(1): 1–9.

    Google Scholar 

  • Xu S Z. 2008. Quantitative trait locus mapping can benefit from segregation distortion. Genetics, 180(4): 2 201–2 208.

    Google Scholar 

  • Young W P, Wheeler P A, Coryell V H, Keim P, Thorgaard G H. 1998. A detailed linkage map of rainbow trout produced using doubled haploids. Genetics, 148(2): 839–850.

    Google Scholar 

  • Yu Y, Zhang X J, Yuan J B, Li F H, Chen X H, Zhao Y Z, Huang L, Zheng H K, Xiang J H. 2015. Genome survey and high-density genetic map construction provide genomic and genetic resources for the Pacific White Shrimp Litopenaeus vannamei. Sci. Rep., 5: 15 612.

    Google Scholar 

  • Yu Z N, Guo X M. 2003. Genetic linkage map of the eastern oyster Crassostrea virginica Gmelin. Biol. Bull., 204(3): 327–338.

    Google Scholar 

  • Yue G H. 2014. Recent advances of genome mapping and marker-assisted selection in aquaculture. Fish and Fisheries, 15(3): 376–396.

    Google Scholar 

  • Zhang J, Zhang Q X, Cheng T R, Yang W R, Pan H T, Zhong J J, Huang L, Liu E Z. 2015. High-density genetic map construction and identification of a locus controlling weeping trait in an ornamental woody plant (Prunusmume Sieb. et Zucc). DNA Res., 22(3): 183–191.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingou Tong or Qing Li.

Additional information

Supported by the Technical Innovation Project of Hubei Province (No. 2018ABA105) and the Enterprise Technology Innovation Project of Wuhan (No. 39 of 2019 WuKe)

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Li, P., Wang, G. et al. Construction of the first high-density genetic map for growth related QTL analysis in Ancherythroculter nigrocauda. J. Ocean. Limnol. 39, 1118–1130 (2021). https://doi.org/10.1007/s00343-020-9290-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-020-9290-7

Keywords

Navigation