Skip to main content

Advertisement

Log in

Phylogenetic Diversity of Sponge-Associated Fungi from the Caribbean and the Pacific of Panama and Their In Vitro Effect on Angiotensin and Endothelin Receptors

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Fungi occupy an important ecological niche in the marine environment, and marine fungi possess an immense biotechnological potential. This study documents the fungal diversity associated with 39 species of sponges and determines their potential to produce secondary metabolites capable of interacting with mammalian G-protein-coupled receptors involved in blood pressure regulation. Total genomic DNA was extracted from 563 representative fungal strains obtained from marine sponges collected by SCUBA from the Caribbean and the Pacific regions of Panama. A total of 194 operational taxonomic units were found with 58 % represented by singletons based on the internal transcribed spacer (ITS) and partial large subunit (LSU) rDNA regions. Marine sponges were highly dominated by Ascomycota fungi (95.6 %) and represented by two major classes, Sordariomycetes and Dothideomycetes. Rarefaction curves showed no saturation, indicating that further efforts are needed to reveal the entire diversity at this site. Several unique clades were found during phylogenetic analysis with the highest diversity of unique clades in the order Pleosporales. From the 65 cultures tested to determine their in vitro effect on angiotensin and endothelin receptors, the extracts of Fusarium sp. and Phoma sp. blocked the activation of these receptors by more than 50 % of the control and seven others inhibited between 30 and 45 %. Our results indicate that marine sponges from Panama are a “hot spot” of fungal diversity as well as a rich resource for capturing, cataloguing, and assessing the pharmacological potential of substances present in previously undiscovered fungi associated with marine sponges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adachi K, Kanoh K, Wisespongp P, Nishijima M, Shizuri Y (2005) Clonostachysins A and B, new anti-dinoflagellate cyclic peptides from a marine-derived fungus. J Antibiot (Tokyo) 58:145–150

    Article  CAS  Google Scholar 

  • Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549

    Article  PubMed  Google Scholar 

  • Baker PW, Kennedy J, Dobson ADW, Marchesi JR (2009) Phylogenetic diversity and antimicrobial activities of fungi associated with Haliclona simulans isolated from Irish coastal waters. Mar Biotechnol 11:540–547

    Article  CAS  PubMed  Google Scholar 

  • Blunt JW, Copp BR, Hu WP, Munro MHG, Northcote PT, Prinsep MR (2009) Marine natural products. Nat Prod Rep 26:170–244

    Article  CAS  PubMed  Google Scholar 

  • Caballero-George C, Vanderheyden PM, Solis PN, Pieters L, Shahat AA, Gupta MP, Vauquelin G, Vlietinck AJ (2001) Biological screening of selected medicinal Panamanian plants by radioligand-binding techniques. Phytomedicine 8:59–70

    Article  CAS  PubMed  Google Scholar 

  • Caballero-George C, Vanderheyden PM, De Bruyne T, Shahat AA, Van den Heuvel H, Solis PN, Gupta MP, Claeys M, Pieters L, Vauquelin G, Vlietinck AJ (2002) In vitro inhibition of [3H]-angiotensin II binding on the human AT1 receptor by proanthocyanidins from Guazuma ulmifolia bark. Planta Med 68:1066–1071

    Article  CAS  PubMed  Google Scholar 

  • Caballero-George C, Bolaños J, Ochoa E, Carballo JL, Cruz JA, Arnold AE (2010) Protocol to isolate sponge-associated fungi from tropical waters and an examination of their cardioprotective potential. Curr Trends Biotechnol Pharm 4:881–899

    CAS  Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552

    Article  CAS  PubMed  Google Scholar 

  • Coates A (2001) En la Historia Geologica, Panama ha Cambiado el Mundo. In: Heckadon-Moreno S (ed) Panama: Puente Biológico. Instituto Smithsonian de Investigaciones Tropicales, Panama, pp 18–25

    Google Scholar 

  • Collin R, Diaz MC, Norenburg J, Rocha RM, Sanchez JA, Schulze A, Schwartz M, Valdes A (2005) Photographic identification guide to some common marine invertebrates of Bocas del Toro, Panama. Caribb J Sci 41:638–707

    Google Scholar 

  • Cruz LJ, Insua MM, Baz JP, Trujillo M, Rodriguez-Mias RA, Oliveira E, Giralt E, Albericio F, Cañedo LM (2006) IB-01212, a new cytotoxic cyclodepsipeptide isolated from the marine fungus Clonostachys sp. ESNA-A009. J Org Chem 71:3335–3338

  • D’Croz L, O’Dea A (2007) Variability in upwelling along the Pacific shelf of Panama and implications for the distribution of nutrients and chlorophyll. Estuar Coast Shelf Sci 73:325–340

    Article  Google Scholar 

  • D’Croz L, Robertson DR (1997) Coastal oceanographic conditions affecting coral reefs on both sides of the Isthmus of Panama. Proc 8th Int Coral Reef Symp 2:2053–2058

  • Da Silva M, Passarini MR, Bonugli RC, Sette LD (2008) Cnidarian-derived filamentous fungi from Brazil: isolation, characterisation and RBBR decolourisation screening. Environ Technol 29:1331–1339

  • Deo SK, Daunert S (2001) Luminescent proteins from Aequorea victoria: applications in drug discovery and in high throughput analysis. Fresenius J Anal Chem 369:258–266

    Article  CAS  PubMed  Google Scholar 

  • Ding B, Yin Y, Zhang F, Li Z (2011) Recovery and phylogenetic diversity of culturable fungi associated with marine sponges Clathrina luteoculcitella and Holoxea sp. in the South China Sea. Mar Biotechnol (NY) 13:713–721

    Article  CAS  Google Scholar 

  • Dostal DE, Hunt RA, Kule CE, Bhat GJ, Karoor V, McWhinney CD, Baker KM (1997) Molecular mechanisms of angiotensin II in modulating cardiac function: intracardiac effects and signal transduction pathways. J Mol Cell Cardiol 29:2893–2902

    Article  CAS  PubMed  Google Scholar 

  • Ebrahim W, Kjer J, El Amrani M, Wray V, Lin W, Ebel R, Lai D, Proksch P (2012) Pullularins E and F, two new peptides from the endophytic fungus Bionectria ochroleuca isolated from the mangrove plant Sonneratia caseolaris. Mar Drugs 10:1081–1091

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Edgar R (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. doi:10.1093/nar/gkh340

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ewing B, Green P (1998) Base-calling of automated sequencer traces using Phred. II. Error probabilities. Genome Res 8:186–194

    Article  CAS  PubMed  Google Scholar 

  • Ewing B, Hillier L, Wendl M, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185

    Article  CAS  PubMed  Google Scholar 

  • Gal-Hemed I, Atanasova L, Komon-Zelazowska M, Druzhinina IS, Viterbo A, Yarden O (2011) Marine isolates of Trichoderma spp. as potential halotolerant agents of biological control for arid-zone agriculture. Appl Environ Microbiol 77:5100–5109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gao Z, Li B, Zheng C, Wang G (2008) Molecular detection of fungal communities in the Hawaiian marine sponges Suberites zeteki and Mycale armata. Appl Environ Microbiol 74:6091–6101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes: application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  • Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224

    Article  CAS  PubMed  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Hatai K (2012) Diseases of fish and shellfish caused by marine fungi. Prog Mol Subcell Biol 53:15–52

    Article  PubMed  Google Scholar 

  • Hills DM, Bull JJ (1993) An empirical test of bootstrapping as a method assessing confidence in phylogenetic analysis. Syst Biol 42:182–192

    Article  Google Scholar 

  • Höller U, König GM, Wright AD (1999) Three new metabolites from marine-derived fungi of the genera Coniothyrium and Microsphaeropsis. J Nat Prod 62:114–118

    Article  PubMed  Google Scholar 

  • Hooper JNA, Van Soest RWM (2002) Systema Porifera: a guide to the classification of sponges, vol 2. Kluwer Academic/Plenum Publisher, New York

    Book  Google Scholar 

  • Jackson J, D’Croz L (2003) El Oceano Se Divide. In: Coates AG (ed) Paseo Pantera. Smithsonian Books, Washington, pp 41–79

    Google Scholar 

  • Jones EBG, Choeyklin R (2008) Ecology of marine and freshwater basidiomycetes. Br Mycol Soc Symp Ser 28:301–324

    Article  Google Scholar 

  • Julianti E, Oh H, Jang KH, Lee JK, Lee SK, Oh DC, Oh KB, Shin J (2011) Acremostrictin, a highly oxygenated metabolite from the marine fungus Acremonium strictum. J Nat Prod 74:2592–2594

    Article  CAS  PubMed  Google Scholar 

  • Kjer J, Debbab A, Aly AH, Proksch P (2010) Methods for isolation of marine-derived endophytic fungi and their bioactive secondary products. Nat Protoc 5:479–490

    Article  CAS  PubMed  Google Scholar 

  • Kohlmeyer J (1986) Taxonomic studies of the marine Ascomycotina. In: Moss ST (ed) The biology of marine fungi. Cambridge University Press, Cambridge, p 234–257

  • Le Poul E, Hisada S, Mizuguchi Y, Dupriez VJ, Burgeon E, Detheux M (2002) Adaptation of aequorin functional assay to high throughput screening. J Biomol Screen 7:57–65

    Article  PubMed  Google Scholar 

  • Li Q, Wang G (2009) Diversity of fungal isolates from three Hawaiian marine sponges. Microbiol Res 164:233–241

    Article  CAS  PubMed  Google Scholar 

  • Liu WC, Li CQ, Zhu P, Yang JL, Cheng KD (2010) Phylogenetic diversity of cultivable fungi associated with two marine sponges: Haliclona simulans and Gelliodes carnosa, collected from the Hainan Island coastal waters of the South China Sea. Fungal Divers 42:1–15

    Article  Google Scholar 

  • Maddison WP, Maddison DR (2009) Mesquite: a modular system for evolutionary analysis. Version 2.72 http://mesquiteproject.org. Accessed 29 Oct 2012

  • Manohar CS, Raghukumar C (2013) Fungal diversity from various marine habitats deduced through culture-independent studies. FEMS Microbiol Lett 341:69–78

    Article  CAS  PubMed  Google Scholar 

  • Masaki T (1989) The discovery, the present state, and the future prospects of endothelin. J Cardiovasc Pharmacol 13(Suppl 5):S1–S4, discussion S18

    Article  CAS  PubMed  Google Scholar 

  • Miao L, Kwong T, Qian PY (2006) Effect of culture conditions on mycelial growth, antibacterial activity, and metabolite profiles of the marine-derived fungus Arthrinium c.f. saccharicola. Appl Microbiol Biotechnol 72:1063–1073

    Article  CAS  PubMed  Google Scholar 

  • Miller MA, Holder MT, Vos R, Midford PE, Liebowitz T, Chan L, Hoover P, Warnow T (2010) The CIPRES portals. CIPRES. 2009-08-04. URL: http://www.phylo.org/sub_sections/portal. Accessed Dec 2010. (Archived by WebCite(r) at http://www.webcitation.org/5imQlJeQa)

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Nakamura M, Ito Y, Ogawa K, Michisuji Y, Sato S, Takada M, Hayashi M, Yaginuma S, Yamamoto S (1995) Stachybocins, novel endothelin receptor antagonists, produced by Stachybotrys sp. M6222. I. Taxonomy, fermentation, isolation and characterization. J Antibiot (Tokyo) 48:1389–1395

    Article  CAS  Google Scholar 

  • Nikolaou A, Van den Eynde I, Tourwé D, Vauquelin G, Tóth G, Mallareddy JR, Poglitsch M, Van Ginderachter JA, Vanderheyden PM (2013) [3H]IVDE77, a novel radioligand with high affinity and selectivity for the insulin-regulated aminopeptidase. Eur J Pharmacol 702:93–102

    Article  CAS  PubMed  Google Scholar 

  • Ogawa T, Ando K, Aotani Y, Shinoda K, Tanaka T, Tsukuda E, Yoshida M, Matsuda Y (1995) RES-1214-1 and -2, novel non-peptidic endothelin type A receptor antagonists produced by Pestalotiopsis sp. J Antibiot (Tokyo) 48:1401–1406

    Article  CAS  Google Scholar 

  • Pairet L, Wrigley SK, Chetland I, Reynolds EE, Hayes MA, Holloway J, Ainsworth AM, Katzer W, Cheng XM, Hupe DJ (1995) Azaphilones with endothelin receptor binding activity produced by Penicillium sclerotiorum: taxonomy, fermentation, isolation, structure elucidation and biological activity. J Antibiot (Tokyo) 48:913–923

    Article  CAS  Google Scholar 

  • Pearman JK, Taylor JE, Kinghorn JR (2010) Fungi in aquatic habitats near St Andrews in Scotland. Mycosphere 1:11–21

    Google Scholar 

  • Porras-Alfaro A, Herrera J, Natvig DO, Lipinski K, Sinsabaugh RL (2011) Diversity and distribution of soil fungal communities in a semiarid grassland. Mycologia 103:10–21

    Article  PubMed  Google Scholar 

  • R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org. Accessed 25 Feb 2013

  • Richards T, Jones M, Leonard G, Bass D (2012) Marine fungi: their ecology and molecular diversity. Ann Rev Mar Sci 4:495–522

    Article  PubMed  Google Scholar 

  • Ridgely RS, Gwynne JA (1989) A guide to the birds of Panama. Princeton University Press, Princeton

    Google Scholar 

  • Salter CE, O’Donnell K, Sutton DA, Marancik DP, Knowles S, Clauss TM, Berliner AL, Camus AC (2012) Dermatitis and systemic mycosis in lined seahorses Hippocampus erectus associated with a marine-adapted Fusarium solani species complex pathogen. Dis Aquat Org 101:23–31

    Article  PubMed  Google Scholar 

  • Shao CL, Wu HX, Wang CY, Liu QA, Xu Y, Wei MY, Qian PY, Gu YC, Zheng CJ, She ZG, Lin YC (2011) Potent antifouling resorcylic acid lactones from the gorgonian-derived fungus Cochliobolus lunatus. J Nat Prod 74:629–633

    Article  CAS  PubMed  Google Scholar 

  • Simister RL, Deines P, Botté ES, Webster NS, Taylor MW (2012) Sponge-specific clusters revisited: a comprehensive phylogeny of sponge-associated microorganisms. Environ Microbiol 14:517–524

    Article  CAS  PubMed  Google Scholar 

  • Spatafora J, Volkmann-Kohlmeyer B, Kohlmeyer J (1998) Independent terrestrial origins of the Halosphaeriales (marine Ascomycota). Am J Bot 85:1569–1580

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 57:758–771

    Article  PubMed  Google Scholar 

  • Sun L, Li D, Tao M, Chen Y, Zhang Q, Dan F, Zhang W (2013) Two new polyketides from a marine sediment-derived fungus Eutypella scoparia FS26. Nat Prod Res 27:1298–1304

  • Suryanarayanan TS (2012) The diversity and importance of fungi associated with marine sponges. Bot Mar 55:553–564

    Article  Google Scholar 

  • Takigawa M, Sakurai T, Kasuya Y, Abe Y, Masaki T, Goto K (1995) Molecular identification of guanine-nucleotide-binding regulatory proteins which couple to endothelin receptors. Eur J Biochem 228:102–108

    Article  CAS  PubMed  Google Scholar 

  • Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56:564–577

    Article  CAS  PubMed  Google Scholar 

  • Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71:295–347

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Taylor MW, Tsai P, Simister RL, Deines P, Botte E, Ericson G, Schmitt S, Webster NS (2013) Sponge-specific bacteria are widespread (but rare) in diverse marine environments. ISME J 7:438–443

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Timmermans PBM, Benfield P, Chiu AT, Herblin WF, Wong PC (1992) Angiotensin II receptors and functional correlates. Am J Hypertens 5:221S–235S

    Article  CAS  PubMed  Google Scholar 

  • Vanderheyden PM, Fierens FL, De Backer JP, Fraeyman N, Vauquelin G (1999) Distinction between surmountable and insurmountable selective AT1 receptor antagonists by use of CHO-K1 cells expressing human angiotensin II AT1 receptors. Br J Pharmacol 126:1057–1065

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang G, Li Q, Zhu P (2008) Phylogenetic diversity of cultivable fungi associated with the Hawaiian sponges Suberites zeteki and Gelliodes fibrosa. Antonie Van Leeuwenhoek 93:163–174

    Article  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Shinsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 315–322

    Google Scholar 

  • Wiese J, Ohlendorf B, Blümel M, Schmaljohann R, Imhoff JF (2011) Phylogenetic identification of fungi isolated from the marine sponge Tethya aurantium and identification of their secondary metabolites. Mar Drugs 9:561–585

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang LH, Miao L, Lee OO, Li X, Xiong H, Pang K, Virjmoed L, Qian P (2007) Effect of culture conditions on antifouling compound production of a sponge-associated fungus. Appl Microbiol Biotechnol 74:1221–1231

    Article  CAS  PubMed  Google Scholar 

  • Zea S (1987) Esponjas del Caribe Colombiano. Catálogo Científico, Bogotá

    Google Scholar 

  • Ziegler C, Leigh EG (2002) A magic web: the forest of Barro Colorado Island. Oxford University Press, Oxford

    Google Scholar 

Download references

Acknowledgments

The authors thank the National Secretariat of Science and Technology of the Republic of Panama for financial support by grants of international collaboration number COL08-014 and COL10-070 and by a partnership program between the Organization for the Prohibition of Chemical Weapons (The Hague, Netherlands) and the International Foundation for Science (Stockholm, Sweden). The College of Agriculture and Life Sciences at The University of Arizona is gratefully acknowledge for technical and logistical support for molecular analyses, Prof. Dr. Luis D’Croz for critically reviewing this work, Juan B. Del Rosario for research assistance, and the Smithsonian Tropical Research Institute for laboratory facilities, boats, and technical support. The authors also want to thank the Panamanian Authority of the Environment (ANAM) for their collaboration.

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherina Caballero-George.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

Rarefaction curves indicating the overall number of culturable fungal species found in three geographical regions (top panel) and isolated from multiple sponge orders (lower panel) as a function of sampling effort. Sponge orders shown in this figure represent the most common or the most sampled sponges. In both cases, there is no clear evidence for saturation in the number of species. (GIF 51 kb)

High resolution image (TIFF 7 kb)

Online Resource 2

(DOCX 41 kb)

Appendices

Appendices

Appendix 1

Table 4 Affiliation of the fungal isolates from sponges collected in the Republic of Panama

Appendix 2

Table 5 Number of fungi isolated and sequenced per sponge specimen

Appendix 3

Table 6 Percentage of receptor inhibition by 100 μg/ml fungal extracts. Data represents the average and the standard deviation of three independent experiments

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolaños, J., De León, L.F., Ochoa, E. et al. Phylogenetic Diversity of Sponge-Associated Fungi from the Caribbean and the Pacific of Panama and Their In Vitro Effect on Angiotensin and Endothelin Receptors. Mar Biotechnol 17, 533–564 (2015). https://doi.org/10.1007/s10126-015-9634-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-015-9634-z

Keywords

Navigation