Skip to main content
Log in

Comparison of Thraustochytrids Aurantiochytrium sp., Schizochytrium sp., Thraustochytrium sp., and Ulkenia sp. for Production of Biodiesel, Long-Chain Omega-3 Oils, and Exopolysaccharide

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Heterotrophic growth of thraustochytrids has potential in coproducing biodiesel for transportation, as well as producing a feedstock for omega-3 long-chain (≥C20) polyunsaturated fatty acids (LC-PUFA), especially docosahexaenoic acid (DHA) for use in nutraceuticals. In this study, we compared eight new endemic Australian thraustochytrid strains from the genera Aurantiochytrium, Schizochytrium, Thraustochytrium, and Ulkenia for the synthesis of exopolysaccharide (EPS), in addition to biodiesel and LC-PUFA. Aurantiochytrium sp. strains readily utilized glucose for biomass production, and increasing glucose from 2 to 4 % w/v of the culture medium resulted in increased biomass yield by an average factor of 1.7. Ulkenia sp. strain TC 010 and Thraustochytrium sp. strain TC 033 did not utilize glucose, while Schizochytrium sp. strain TC 002 utilized less than half the glucose available by day 14, and Thraustochytrium sp. strain TC 004 utilized glucose at 4 % w/v but not 2 % w/v of the culture suggesting a threshold requirement between these values. Across all strains, increasing glucose from 2 to 4 % w/v of the culture medium resulted in increased total fatty acid methyl ester content by an average factor of 1.9. Despite an increasing literature demonstrating the capacity of thraustochytrids for DHA synthesis, the production of EPS from these organisms is not well documented. A broad range of EPS yields was observed. The maximum yield of EPS was observed for Schizochytrium sp. strain TC 002 (299 mg/L). High biomass-producing strains that also have high lipid and high EPS yield may be better candidates for commercial production of biofuels and other coproducts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bahnweg G (1979a) Studies on the physiology of thraustochytriales: I. Growth and nitrogen nutrition of Thraustochytrium spp., Schizochytrium sp., Japonicum sp., Ulkenia spp. and Labrynthuloides spp. Veröff Inst Meeresforsc Bremerh 17:245–268

    CAS  Google Scholar 

  • Bahnweg G (1979b) Studies on the physiology of thraustochytriales: II. Carbon nutrition of Thraustochytrium spp., Schizochytrium sp., Japonicum sp., Ulkenia spp. and Labrynthuloides spp. Veröff Inst Meeresforsc Bremerh 17:269–273

    CAS  Google Scholar 

  • Bajpai P, Bajpai PK, Ward OP (1991a) Production of docosahexaenoic acid by Thraustochytrium aureum. Appl Microbiol Biotechnol 35:706–710

    CAS  Google Scholar 

  • Bajpai PK, Bajpai P, Ward OP (1991b) Optimization of production of docosahexaenoic acid (DHA) by Thraustochytrium aureum ATCC 34304. J Am Oil Chem Soc 68:509–514

    Article  CAS  Google Scholar 

  • Bitton G, Freihofer V (1977) Influence of extracellular polysaccharides on the toxicity of copper and cadmium toward Klebsiella aerogenes. Microb Ecol 4:119–125

    Article  CAS  PubMed  Google Scholar 

  • Blumenkrantz N, Asboe-Hansen G (1973) New method for quantitative determination of uronic acids. Anal Biochem 54:484–489

    Article  CAS  PubMed  Google Scholar 

  • Bowles RD, Hunt AE, Bremer GB, Duchars MG, Eaton RA (1999) Long-chain n-3 polyunsaturated fatty acid production by members of the marine protistan group the thraustochytrids: screening of isolates and optimisation of docosahexaenoic acid production. J Biotechnol 70:193–202

    Article  CAS  Google Scholar 

  • Burja AM, Radianingtyas H, Windust A, Barrow CJ (2006) Isolation and characterization of polyunsaturated fatty acid producing Thraustochytrium species: screening of strains and optimization of omega-3 production. Appl Microbiol Biotechnol 72:1161–1169

    Article  CAS  PubMed  Google Scholar 

  • Caron DA (1987) Grazing of attached bacteria by heterotrophic microflagellates. Microb Ecol 13:203–218

    Article  CAS  PubMed  Google Scholar 

  • Cox SL, Hulston D, Maas EW (2009) Cryopreservation of marine thraustochytrids (Labyrinthulomycetes). Cryobiology 59:363–365

    Article  CAS  PubMed  Google Scholar 

  • Decho AW (1990) Microbial exopolymer secretions in ocean environments: their role (s) in food webs and marine processes. Oceanogr Mar Biol Annu Rev 28:73–153

    Google Scholar 

  • Donot F, Fontana A, Baccou J, Schorr-Galindo S (2012) Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Carbohydr Polym 87:951–962

    Article  CAS  Google Scholar 

  • Filisetti-Cozzi TMCC, Carpita NC (1991) Measurement of uronic acids without interference from neutral sugars. Anal Biochem 197:157–162

    Article  CAS  PubMed  Google Scholar 

  • Flemming HC, Wingender J (2001) Relevance of microbial extracellular polymeric substances (EPSs)—part I: structural and ecological aspects. Water Sci Technol 43:1–8

    CAS  PubMed  Google Scholar 

  • Flemming H-C, Wingender J, Moritz R, Borchard W, Mayer C (1999) In: Keevil C, Dow C, Godfree A, Holt D (eds) Biofilms in the aquatic environment. Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Forsyth JS, Carlson SE (2001) Long-chain polyunsaturated fatty acids in infant nutrition: effects on infant development. Curr Opin Clin Nutr Metab Care 4:123–126

    Article  CAS  PubMed  Google Scholar 

  • González López CV, Acién Fernández FG, Fernández Sevilla JM, Sánchez Fernández JF, Cerón García MC, Molina Grima E (2009) Utilization of the cyanobacteria Anabaena sp. ATCC 33047 in CO2 removal processes. Bioresour Technol 100:5904–5910

    Article  PubMed  Google Scholar 

  • Guezennec J (2002) Deep-sea hydrothermal vents: a new source of innovative bacterial exopolysaccharides of biotechnological interest? J Ind Microbiol Biotechnol 29:204–208

    Article  CAS  PubMed  Google Scholar 

  • Hall MJ, Ratledge C (1977) Lipid accumulation in an oleaginous yeast (Candida 107) growing on glucose under various conditions in a one- and two-stage continuous culture. Appl Environ Microbiol 33:577–584

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hassler CS, Schoemann V, Nichols CM, Butler ECV, Boyd PW (2011) Saccharides enhance iron bioavailability to Southern Ocean phytoplankton. Proc Natl Acad Sci 108:1076–1081

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Horrocks L, Farooqui A (2004) Docosahexaenoic acid in the diet: its importance in maintenance and restoration of neural membrane function. Prostaglandins Leukot Essent Fatty Acids 70:361–372

    Article  CAS  PubMed  Google Scholar 

  • Horrocks LA, Yeo YK (1999) Health benefits of docosahexaenoic acid (DHA). Pharmacol Res 40:211–225

    Article  CAS  PubMed  Google Scholar 

  • Iida I, Nakahara T, Yokochi T, Kamisaka Y, Yagi H, Yamaoka M, Suzuki O (1996) Improvement of docosahexaenoic acid production in a culture of Thraustochytrium aureum by medium optimization. J Ferment Bioeng 81:76–78

    Article  CAS  Google Scholar 

  • Jain R, Raghukumar S, Tharanathan R, Bhosle NB (2005) Extracellular polysaccharide production by thraustochytrid protists. Mar Biotechnol 7:184–192

    Article  CAS  PubMed  Google Scholar 

  • Jain R, Raghukumar S, Sambaiah K, Kumon Y, Nakahara T (2007) Docosahexaenoic acid accumulation in thraustochytrids: search for the rationale. Mar Biol 151:1657–1664

    Article  CAS  Google Scholar 

  • Jeanthon C, Prieur D (1990) Susceptibility to heavy metals and characterization of heterotrophic bacteria isolated from two hydrothermal vent polychaete annelids, Alvinella pompejana and Alvinella caudata. Appl Environ Microbiol 56:3308–3314

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jiang Y, Fan KW, Tsz-YeungWong R, Chen F (2004) Fatty acid composition and squalene content of the marine microalga Schizochytrium mangrovei. J Agric Food Chem 52:1196–1200

    Article  CAS  PubMed  Google Scholar 

  • Knothe G (2007) Some aspects of biodiesel oxidative stability. Fuel Process Technol 88:669–677

    Article  CAS  Google Scholar 

  • Knothe G (2008) “Designer” biodiesel: optimizing fatty ester composition to improve fuel properties. Energy Fuel 22:1358–1364

    Article  CAS  Google Scholar 

  • Kris-Etherton PM, Hecker KD, Binkoski AE (2004) Polyunsaturated fatty acids and cardiovascular health. Nutr Rev 62:414–426

    Article  PubMed  Google Scholar 

  • Kucuk C, Merih K (2009) Extracellular polysaccharide production by Rhizobium ciceri from Turkey. Ann Microbiol 59:141–144

    Article  CAS  Google Scholar 

  • Labare MP, Guthrie K, Weiner RM (1989) Polysaccharide exopolymer adhesives from periphytic marine bacteria. J Adhes Sci Technol 3:213–223

    Article  CAS  Google Scholar 

  • Lee Chang KJ, Mansour MP, Dunstan GA, Blackburn SI, Koutoulis A, Nichols PD (2011) Odd-chain polyunsaturated fatty acids in thraustochytrids. Phytochemistry 72:1460–1465

    Article  Google Scholar 

  • Lee Chang KJ, Dunstan GA, Abell G, Clementson L, Blackburn S, Nichols PD, Koutoulis A (2012) Biodiscovery of new Australian thraustochytrids for production of biodiesel and long-chain omega-3 oils. Appl Microbiol Biotechnol 93:2215–2231

    Article  PubMed  Google Scholar 

  • Lee Chang KJ, Dumsday G, Nichols P, Dunstan G, Blackburn S, Koutoulis A (2013) High cell density cultivation of a novel Aurantiochytrium sp. strain TC 20 in a fed-batch system using glycerol to produce feedstock for biodiesel and omega-3 oils. Appl Microbiol Biotechnol. doi:10.1007/s00253-013-4965-z

    PubMed  Google Scholar 

  • Lewis TE (2001) Characterisation and application of Australian thraustochytrids. PhD thesis, University of Tasmania, Hobart

  • Lewis TE, Nichols PD, McMeekin TA (1999) The biological potential of thraustochytrids. Mar Biotechnol 1:580–587

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Ward OP (1994) Production of docosahexaenoic acid by Thraustochytrium roseum. J Ind Microbiol 13:238–241

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N (2008) Biofuels from microalgae. Biotechnol Prog 24:815–820

    CAS  PubMed  Google Scholar 

  • Lippmeier J, Crawford K, Owen C, Rivas A, Metz J, Apt K (2009) Characterization of both polyunsaturated fatty acid biosynthetic pathways in Schizochytrium sp. Lipids 44:621–630

    Article  CAS  PubMed  Google Scholar 

  • Maas PAY, Kleinschuster SJ, Dykstra MJ, Smolowitz R, Parent J (1999) Molecular characterization of QPX (Quahog Parasite Unknown), a pathogen of Mercenaria mercenaria. J Shellfish Res 18:561–567

    Google Scholar 

  • Manca MC, Lama L, Improta R, Esposito E, Gambacorta A, Nicolaus B (1996) Chemical composition of two exopolysaccharides from Bacillus thermoantarcticus. Appl Environ Microbiol 62:3265–3269

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mancuso Nichols C, Bowman JP, Guezennec J (2005) Effects of incubation temperature on growth and production of exopolysaccharides by an Antarctic sea ice bacterium grown in batch culture. Appl Environ Microbiol 71:3519–3523

    Article  Google Scholar 

  • Monyem A, Canakci M, Van Gerpen JH (2000) Investigation of biodiesel thermal stability under simulated in-use conditions. Appl Eng Agric 16:373–378

    Article  Google Scholar 

  • Quilodrán B, Hinzpeter I, Hormazabal E, Quiroz A, Shene C (2010) Docosahexaenoic acid (C22:6n-3, DHA) and astaxanthin production by Thraustochytriidae sp. AS4-A1 a native strain with high similitude to Ulkenia sp.: evaluation of liquid residues from food industry as nutrient sources. Enzyme Microb Technol 47:24–30

    Article  Google Scholar 

  • Raghukumar S (2002) Ecology of the marine protists, the Labyrinthulomycetes (thraustochytrids and labyrinthulids). Eur J Protistol 38:127–145

    Article  Google Scholar 

  • Raghukumar S, Anil AC, Khandeparker L, Patil JS (2000) Thraustochytrid protists as a component of marine microbial films. Mar Biol 136:603–609

    Article  Google Scholar 

  • Ratledge C (2004) Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86:807–815

    Article  CAS  PubMed  Google Scholar 

  • Ratledge C, Wynn JP (2002) The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol 51:1–51

    Article  CAS  PubMed  Google Scholar 

  • Ren L-J, Ji X-J, Huang H, Qu L, Feng Y, Tong Q-Q, Ouyang P-K (2010) Development of a stepwise aeration control strategy for efficient docosahexaenoic acid production by Schizochytrium sp. Appl Microbiol Biotechnol 87:1649–1656

    Article  CAS  PubMed  Google Scholar 

  • Rendleman J (1978) Metal-polysaccharide complexes—part I. Food Chem 3:47–79

    Article  CAS  Google Scholar 

  • Rimington C (1931) The carbohydrate complex of the serum proteins: improved method for isolation and re-determination of structure. Isolation of glucosaminodimannose from proteins of ox blood. Biochem J 25:1062

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sandford PA (1984) In: Colwell RR, Pariser ER, Sinksey AJ (eds) Biotechnology of marine polysaccharide. McGraw-Hill, New York

    Google Scholar 

  • Shirasaka N, Hirai Y, Nakabayashi H, Yoshizumi H (2005) Effect of cyanocobalamin and p-toluic acid on the fatty acid composition of Schizochytrium limacinum (Thraustochytriaceae, Labyrinthulomycota). Mycoscience 46:358–363

    Article  CAS  Google Scholar 

  • Singh A, Ward OP (1996) Production of high yields of docosahexaenoic acid by Thraustochytrium roseum ATCC 28210. J Ind Microbiol 16:370–373

    Article  CAS  Google Scholar 

  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  CAS  PubMed  Google Scholar 

  • Stephens E, Ross IL, King Z, Mussgnug JH, Kruse O, Posten C, Borowitzka MA, Hankamer B (2010) An economic and technical evaluation of microalgal biofuels. Nat Biotechnol 28:126–128

    Article  CAS  PubMed  Google Scholar 

  • Sutherland IW (1972) In: Rose AH, Tempest DW (eds) Advances in microbial physiology. Academic, London

    Google Scholar 

  • Sutherland IW (1982) In: Dans AHR, Morris JG (eds) Advances in microbial physiology. Academic, New York

    Google Scholar 

  • Sutherland IW (1997) Microbial exopolysaccharides—structural subtleties and their consequences. Pure Appl Chem 69:1911–1918

    Article  CAS  Google Scholar 

  • Sutherland IW (1998) Novel and established applications of microbial polysaccharides. Trends Biotechnol 16:41–46

    Article  CAS  PubMed  Google Scholar 

  • Takahata K, Monobe K, Tada M, Weber PC (1998) The benefits and risks of n-3 polyunsaturated fatty acids. Biosci Biotechnol Biochem 62:2079–2085

    Article  CAS  PubMed  Google Scholar 

  • Vazhappilly R, Chen F (1998) Heterotrophic production potential of omega-3 polyunsaturated fatty acids by microalgae and algae-like microorganisms. Bot Mar 41:553–558

    Article  CAS  Google Scholar 

  • Weiner RM (1997) Biopolymers from marine prokaryotes. Trends Biotechnol 15:390–394

    Article  CAS  PubMed  Google Scholar 

  • Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329:796–799

    Article  CAS  PubMed  Google Scholar 

  • Williams A, Wimpenny J (1978) Exopolysaccharide production by Pseudomonas NCIB11264 grown in continuous culture. J Gen Microbiol 104:47–57

    Article  CAS  PubMed  Google Scholar 

  • Wotton RS (2004) The ubiquity and many roles of exopolymers (EPS) in aquatic systems. Sci Mar 68:13–21

    Article  CAS  Google Scholar 

  • Wu ST, Yu ST, Lin LP (2005) Effect of culture conditions on docosahexaenoic acid production by Schizochytrium sp. S31. Process Biochem 40:3103–3108

    Article  CAS  Google Scholar 

  • Yang H-L, Lu C-K, Chen S-F, Chen Y-M, Chen Y-M (2010) Isolation and characterization of Taiwanese heterotrophic microalgae: screening of strains for docosahexaenoic acid (DHA) production. Mar Biotechnol 12:173–185

    Article  CAS  PubMed  Google Scholar 

  • Yokochi T, Honda D, Higashihara T, Nakahara T (1998) Optimization of docosahexaenoic acid production by Schizochytrium limacinum SR21. Appl Microbiol Biotechnol 49:72–76

    Article  CAS  Google Scholar 

  • Zanchetta P, Lagarde N, Guezennec J (2003) A new bone-healing material: a hyaluronic acid-like bacterial exopolysaccharide. Calcif Tissue Int 72:74–79

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Zhang X, Ren X, Zhu Q (2008) Effects of culture conditions on growth and docosahexaenoic acid production from Schizochytrium limacinum. J Ocean Univ China (Engl Ed) 7:83–88

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Commonwealth Scientific and Industrial Research Organisation (CSIRO) Energy Transformed Flagship and Food Futures Flagship for their support, Ian Jameson for assistance with microscope operation, Cathy Johnston for assistance with culture media preparation, Dan Holdsworth for management and maintenance of the GC-MS facility, Peter Mansour for assistance with GC operation, and the helpful comments from two anonymous journal referees and Dr. Nobuhiro Fusetani. Kim Jye Lee Chang was supported by an Australian Postgraduate Award and a CSIRO Office of the Chief Executive top-up scholarship through the CSIRO Energy Transformed Flagship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim Jye Lee Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee Chang, K.J., Nichols, C.M., Blackburn, S.I. et al. Comparison of Thraustochytrids Aurantiochytrium sp., Schizochytrium sp., Thraustochytrium sp., and Ulkenia sp. for Production of Biodiesel, Long-Chain Omega-3 Oils, and Exopolysaccharide. Mar Biotechnol 16, 396–411 (2014). https://doi.org/10.1007/s10126-014-9560-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-014-9560-5

Keywords

Navigation