Skip to main content
Log in

Gram-Positive Marine Bacteria as a Potential Resource for the Discovery of Quorum Sensing Inhibitors

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Inhibitors of bacterial quorum sensing have been proposed as potentially novel therapeutics for the treatment of certain bacterial diseases. We recently reported a marine Halobacillus salinus isolate that secretes secondary metabolites capable of quenching quorum sensing phenotypes in several Gram-negative reporter strains. To investigate how widespread the production of such compounds may be in the marine bacterial environment, 332 Gram-positive isolates from diverse habitats were tested for their ability to interfere with Vibrio harveyi bioluminescence, a cell signaling-regulated phenotype. Rapid assay methods were employed where environmental isolates were propagated alongside the reporter strain. “Actives” were defined as bacteria that interfered with bioluminescence without visible cell-killing effects (antibiotic activity). A total of 49 bacterial isolates interfered with bioluminescence production in the assays. Metabolite extracts were generated from cultures of the active isolates, and 28 reproduced the bioluminescence inhibition against V. harveyi. Of those 28, five extracts additionally inhibited violacein production by Chromobacterium violaceum. Chemical investigations revealed that phenethylamides and a cyclic dipeptide are two types of secondary metabolites responsible for the observed activities. The active bacterial isolates belonged primarily to either the genus Bacillus or Halobacillus. The results suggest that Gram-positive marine bacteria are worthy of further investigation for the discovery of quorum sensing antagonists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bahn YS, Park JM, Bai DH, Takase S, Yu JH (1998) YUA001, a novel aldose reductase inhibitor isolated from alkalophilic Corynebacterium sp. YUA25-I. Taxonomy, fermentation, isolation and characterization. J Antibiot 51:902–907

    PubMed  CAS  Google Scholar 

  • Barsby T, Kelly MT, Gagne SM, Andersen RJ (2001) Bogorol A produced in culture by a marine Bacillus sp. reveals a novel template for cationic peptide antibiotics. Org Lett 3:437–440

    Article  PubMed  CAS  Google Scholar 

  • Bassler BL, Greenberg EP, Stevens AM (1997) Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi. J Bacteriol 179:4043–4045

    PubMed  CAS  Google Scholar 

  • Bjarnsholt T, Jensen PO, Rasmussen TB, Christophersen L, Calum H, Hentzer M, Hougen H-P, Rygaard J, Moser C, Eberl L, Hoiby N, Givskov M (2005) Garlic blocks quorum sensing and promotes rapid clearing of pulmonary Pseudomonas aeruginosa infections. Microbiology 151:3873–3880

    Article  PubMed  CAS  Google Scholar 

  • Buck JD (1982) Nonstaining (KOH) method for the determination of Gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993

    PubMed  CAS  Google Scholar 

  • Campbell J, Lin Q, Geske GD, Blackwell HE (2009) New and unexpected insights into the modulation of luxR-type quorum sensing by cyclic dipeptides. ACS Chem Biol 4:1051–1059

    Article  PubMed  CAS  Google Scholar 

  • Costerton W, Veeh R, Shirtliff M, Pasmore M, Post C, Ehrlich G (2003) The application of biofilm science to the study and control of chronic bacterial infections. J Clin Invest 112:1466–1477

    PubMed  CAS  Google Scholar 

  • Degrassi G, Aguilar C, Bosco M, Zahariev S, Pongor S, Venturi V (2002) Plant growth-promoting Pseudomonas putida WCS358 produces and secretes four cyclic dipeptides: cross-talk with quorum sensing bacterial sensors. Curr Microbiol 45:250–254

    Article  PubMed  CAS  Google Scholar 

  • Dong YH, Xu JL, Li XZ, Zhang LH (2000) AiiA, an enzyme that inactivates the acyl homoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc Natl Acad Sci USA 97:3526–3531

    Article  PubMed  CAS  Google Scholar 

  • Dong YH, Wang LH, Xu JL, Zhang HB, Zhang XF, Zhang LH (2001) Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411:813–817

    Article  PubMed  CAS  Google Scholar 

  • Dong YH, Gusti AR, Zhang Q, Xu JL, Zhang LH (2002) Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Appl Environ Microbiol 68:1754–1759

    Article  PubMed  CAS  Google Scholar 

  • Dong YH, Wang LH, Zhang LH (2007) Quorum-quenching microbial infections: mechanisms and implications. Philos Trans R Soc Lond B Biol Sci 362:1201–1211

    Article  PubMed  CAS  Google Scholar 

  • Fenical W, Jensen PR (2006) Developing a new resource for drug discovery: marine actinomycete bacteria. Nat Chem Biol 2:666–673

    Article  PubMed  CAS  Google Scholar 

  • Fu X, Schmitz FJ, Tanner RS (1995) Chemical constituents of halophilic facultatively anaerobic bacteria. J Nat Prod 58:1950–1954

    Article  PubMed  CAS  Google Scholar 

  • Fuqua C, Parsek MR, Greenberg EP (2001) Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet 35:439–468

    Article  PubMed  CAS  Google Scholar 

  • Givskov M, de Nys R, Manefield M, Gram L, Maximilien R, Eberl L, Molin S, Steinberg PD, Kjelleberg S (1996) Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J Bacteriol 178:6618–6622

    PubMed  CAS  Google Scholar 

  • Gram L, Grossart H-P, Schlingloff A, Kiorboe T (2002) Possible quorum sensing in marine snow bacteria: production of acylated homoserine lactones by Roseobacter strains isolated from marine snow. Appl Environ Microbiol 68:4111–4116

    Article  PubMed  CAS  Google Scholar 

  • Guo Q, Guo D, Zhao B, Xu J, Li R (2007) Two cyclic dipeptides from Pseudomonas fluorescens GcM5-1A carried by the pine wood nematode and their toxicities to Japanese black pine suspension cells and seedlings in vitro. J Nematol 39:243–247

    PubMed  CAS  Google Scholar 

  • Henke JM, Bassler BL (2004) Three parallel quorum-sensing systems regulate gene expression in Vibrio harveyi. J Bacteriol 186:6902–6914

    Article  PubMed  CAS  Google Scholar 

  • Hentzer M, Givskov M (2003) Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. J Clin Invest 112:1300–1307

    PubMed  CAS  Google Scholar 

  • Hentzer M, Riedel K, Rasmussen TB, Heydorn A, Andersen JB, Parsek MR, Rice SA, Eberl L, Molin S, Hoiby N, Kjelleberg S, GIVSKOV M (2002) Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology 148:87–102

    PubMed  CAS  Google Scholar 

  • Higgins DA, Pomianek ME, Kraml CM, Taylor RK, Semmelhack MF, Bassler BL (2007) The major Vibrio cholerae autoinducer and its role in virulence factor production. Nature 450:883–886

    Article  PubMed  CAS  Google Scholar 

  • Higgs RE, Zahn JA, Gygi JD, Hilton MD (2001) Rapid method to estimate the presence of secondary metabolites in microbial extracts. Appl Environ Microbiol 67:371–376

    Article  PubMed  CAS  Google Scholar 

  • Holden MT, Ram Chhabra S, de Nys R, Stead P, Bainton NJ, Hill PJ, Manefield M, Kumar N, Labatte M, England D, Rice S, Givskov M, Salmond GP, Stewart GS, Bycroft BW, Kjelleberg S, Williams P (1999) Quorum-sensing cross talk: isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other gram-negative bacteria. Mol Microbiol 33:1254–1266

    Article  PubMed  CAS  Google Scholar 

  • Holden M, Swift S, Williams P (2000) New signal molecules on the quorum-sensing block. Trends Microbiol 8:101–103

    Article  PubMed  CAS  Google Scholar 

  • Joint I, Tait K, Wheeler G (2007) Cross-kingdom signalling: exploitation of bacterial quorum sensing molecules by the green seaweed Ulva. Philos Trans R Soc Lond B Biol Sci, Online

  • Kaufmann GF, Park J, Janda KD (2008) Bacterial quorum sensing: a new target for anti-infective immunotherapy. Expert Opin Biol Ther 8:719–724

    Article  PubMed  CAS  Google Scholar 

  • Kempner ES, Hanson FE (1968) Aspects of light production by Photobacterium fischeri. J Bacteriol 95:975–979

    PubMed  CAS  Google Scholar 

  • Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, et al. (2004). ARB: a software environment for sequence data. Nucleic Acids Res, 32(4), 1363-1371.

    Article  PubMed  CAS  Google Scholar 

  • Martin CA, Hoven AD, Cook AM (2008) Therapeutic frontiers: preventing and treating infectious diseases by inhibiting bacterial quorum sensing. Eur J Clin Microbiol Infect Dis 27:635–642

    Article  PubMed  CAS  Google Scholar 

  • Maskey RP, Asolkar RN, Kapaun E, Wagner-Dobler I, Laatsch H (2002) Phytotoxic arylethylamides from limnic bacteria using a screening with microalgae. J Antibiot (Tokyo) 55:643–649

    CAS  Google Scholar 

  • Mclean RJC, Pierson LS III, Fuqua C (2004) A simple screening protocol for the identification of quorum signal antagonists. J Microbiol Methods 58:351–360

    Article  PubMed  CAS  Google Scholar 

  • Mohamed NM, Cicirelli EM, Kan J, Chen F, Fuqua C, Hill RT (2008) Diversity and quorum-sensing signal production of Proteobacteria associated with marine sponges. Environ Microbiol 10:75–86

    Article  PubMed  CAS  Google Scholar 

  • Morohoshi T, Kato M, Fukamachi K, Kato N, Ikeda T (2008) N-acylhomoserine lactone regulates violacein production in Chromobacterium violaceum type strain ATCC 12472. FEMS Microbiol Lett 279:124–130

    Article  PubMed  CAS  Google Scholar 

  • Nealson KL (1977) Autoinduction of bacterial luciferase. Arch Microbiol 112:73–79

    Article  PubMed  CAS  Google Scholar 

  • Oh DC, Jensen PR, Kauffman CA, Fenical W (2005) Libertellenones A-D: induction of cytotoxic diterpenoid biosynthesis by marine microbial competition. Bioorg Med Chem 13:5267–5273

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen TB, Givskov M (2006) Quorum sensing inhibitors: a bargain of effects. Microbiology 152:895–904

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen TB, Skindersoe ME, Bjarnsholt T, Phipps RK, Christensen KB, Jensen PO, Andersen JB, Koch B, Larsen TO, Hentzer M, Eberl L, Hoiby N, Givskov M (2005) Identity and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiology 151:1325–1340

    Article  PubMed  CAS  Google Scholar 

  • Rice SA, Mcdougald D, Givskov M, Kjelleberg S (2008) Detection and inhibition of bacterial cell–cell communication. Methods Mol Biol 431:55–68

    Article  PubMed  CAS  Google Scholar 

  • Skindersoe ME, Ettinger-Epstein P, Rasmussen TB, Bjarnsholt T, de nys R, Givskov M (2008) Quorum sensing antagonism from marine organisms. Mar Biotechnol 10:56–63

    Article  PubMed  CAS  Google Scholar 

  • Teasdale ME, Liu J, Wallace J, Akhlaghi F, Rowley DC (2009) Secondary metabolites produced by the marine bacterium Halobacillus salinus that inhibit quorum sensing-controlled phenotypes in gram-negative bacteria. Appl Environ Microbiol 75:567–572

    Article  PubMed  CAS  Google Scholar 

  • Trischman JA, Oeffner RE, de Luna MG, Kazaoka M (2004) Competitive induction and enhancement of indole and a diketopiperazine in marine bacteria. Mar Biotechnol (NY) 6:215–220

    Article  CAS  Google Scholar 

  • Wilgenbusch reference (Wilgenbusch JC, Swofford D (2003) Inferring evolutionary trees with PAUP*. Curr Protoc Bioinformatics, Chapter 6, Unit 6 4.

  • Yan L, Boyd KG, Adams DR, Burgess JG (2003) Biofilm-specific cross-species induction of antimicrobial compounds in bacilli. Appl Environ Microbiol 69:3719–3727

    Article  PubMed  CAS  Google Scholar 

  • Ymele-Leki P, Ross JM (2007) Erosion from Staphylococcus aureus biofilms grown under physiologically relevant fluid shear forces yields bacterial cells with reduced avidity to collagen. Appl Environ Microbiol 73:1834–1841

    Article  PubMed  CAS  Google Scholar 

  • Yoneyama H, Katsumata R (2006) Antibiotic resistance in bacteria and its future for novel antibiotic development. Biosci Biotechnol Biochem 705:1060–1075

    Article  Google Scholar 

  • Zhang HL, Hua HM, Pei YH, Yao XS (2004) Three new cytotoxic cyclic acylpeptides from marine Bacillus sp. Chem Pharm Bull (Tokyo) 52:1029–1030

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by NOAA Grant NA04OAR4600193 and NSF grant MCB 04538743 to D. R. We thank Dr. Richard A. Long (University of South Carolina) for the use of the bacterial isolates from microbial mats, and Dr. John King (University of Rhode Island) for access to the Ninigret Pond sediment cores.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Rowley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teasdale, M.E., Donovan, K.A., Forschner-Dancause, S.R. et al. Gram-Positive Marine Bacteria as a Potential Resource for the Discovery of Quorum Sensing Inhibitors. Mar Biotechnol 13, 722–732 (2011). https://doi.org/10.1007/s10126-010-9334-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-010-9334-7

Keywords

Navigation