Skip to main content
Log in

Implications of the Up-regulation of Genes Encoding Protein Degradation Enzymes and Heat Shock Protein 90 for Intertidal Green Macroalga Ulva fasciata Against Hypersalinity-Induced Protein Oxidation

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

The molecular acclimation of intertidal green macroalga Ulva fasciata Delile to high salinity stress were examined by the construction of a forward cDNA library via the suppressive subtractive hybridization between 30‰ and 90‰ (24 h) and by the time course dynamics of several abundantly expressed genes. Among the genes with known sequences, the expressed sequence tags are abundant in the function of protein synthesis (ribosomal protein) and destination. The cDNAs of ATP-dependent Clp protease (UfClpC), 20S proteasome β-subunit type 1 domain (UfPbf1), ubiquitin-conjugating enzyme E2 I (UfUbc9), and heat shock protein 90A (UfHsp90A) were cloned. UfClpC transcript increased 3 h after 90‰ treatment, followed by a decrease, while UfPbf1 and UfUbc9 transcripts increased after 12 h and decreased at 48 h. The transcripts of UfHsp90A increased 1 h after 90‰ treatment, followed by a drop and to the control level at 48 h. Protease activity increased 3 h after 90‰ treatment and decreased to the control level at 48 h. H2O2 contents increased 1 h after 90‰ treatment and then remained unchanged, but protein carbonyl group contents increased after 48 h. The treatments of reactive oxygen species scavengers partially alleviated 90‰ damage (partial growth rescue) and suppressed the increases in H2O2 content, protein carbonyl group content, protease activity, and UfClpC, UfPbf1, UfUbc9, and UfHsp90A transcripts by 90‰. The induction of specific chaperones and proteases at the molecular level for protein quality control can be considered as one of the molecular mechanisms of hypersalinity acclimation in U. fasciata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adam Z, Clarke AK (2002) Cutting edge of chloroplast proteolysis. Trends Plant Sci 7:451–456

    Google Scholar 

  • Adam Z, Adamska I, Nakabayashi K, Ostersetzer O, Haussuhl K, Manuell A, Zheng B, Vallon O, Rodermel SR, Shinozaki K, Clarke AK (2001) Chloroplast and mitochondrial proteases in Arabidopsis. A proposed nomenclature. Plant Physiol 125:1912–1918

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman D (1997) Gapped blast and PSI-blast: a new generation of protein database search programs. Nuc Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  • Andersson FI, Blakytny R, Kirstein J, Turgay K, Bukau B, Mogk A, Clarke AK (2006) Cyanobacterial ClpC/HSP100 protein displays intrinsic chaperone activity. J Biol Chem 281:5468–5475

    Google Scholar 

  • Berlett BC, Stadman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272:20313–20316

    Article  PubMed  CAS  Google Scholar 

  • Bevan M, Bancroft I, Bent E, Love K, Goodman H, Dean C, Bergkamp R, Dirkse W, Van Staveren M, Stiekema W, Drost L, Ridley P, Hudson S-A, Patel K, Murphy G, Piffanelli P, Wedler H, Wedler E, Wambutt R, Weitzenegger T, Pohl TM, Terryn N, Gielen J, Villarroel R, De Clerck R, Van Montagu M, Lecharny A, Auborg S, Kreis I, Gy M, Lao N, Kavanagh T, Hempel S, Kotter P, Entian K-D, Rieger M, Schaeffer M, Funk B, Muellerauer S, Silvey M, James R, Montfort A, Pons A, Puigdomenech P, Douka A, Voukelatou E, Milioni D, Hatzopoulos P, Piravandi E, Obermaier B, Hilbert H, Moores T, Jones JDG, Eneva T, Palme K, Benes V, Rechman S, Ansorge W, Cooke R, Berger C, Delseny M, Voet M, Volckaert G, Mewes H-W, Klosterman S, Schueller C, Chalwatzis N (1998) Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature 391:485–488

    Article  PubMed  CAS  Google Scholar 

  • Boston RS, Viitanen PV, Vierling E (1996) Molecular chaperones and protein folding in plants. Plant Mol Biol 2:191–222

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantitative of microgram quantities of protein using the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Clarke AK, MacDonald TM, Sjögren LEL (2005) The ATP-dependent Clp protease in chloroplasts of higher plants. Physiol Plant 23:406–412

    Google Scholar 

  • Colleń J, Guisle-Marsollier I, Leger J, Boyen C (2007) Response of the transcriptome of the intertidal red seaweed Chondrus crispus to controlled and natural stresses. New Phytol 176:45–55

    Article  PubMed  Google Scholar 

  • Davies KJ (2001) Degradation of oxidized proteins by the 20S proteasome. Biochimie 83:301–310

    Article  PubMed  CAS  Google Scholar 

  • Desterro JMP, Thomson J, Hay RT (1997) Ubc9 conjugates SUMO but not ubiquitin. FEBS Lett 417:297–300

    Article  PubMed  CAS  Google Scholar 

  • Frees D, Savijoki K, Varmanen P, Ingmer H (2007) Clp ATPases and ClpP proteolytic complexes regulate vital biological processes in low GC, Gram-positive bacteria. Mol Microbiol 63:1285–1295

    Article  PubMed  CAS  Google Scholar 

  • Goldberg AL (2003) Protein degradation and protection against misfolded or damaged proteins. Nature 426:895–899

    Article  PubMed  CAS  Google Scholar 

  • Hung KT, Kao CH (2004) Nitric oxide acts as an antioxidant and delays methyl jasmonate-induced senescence of rice leaves. J Plant Physiol 161:43–52

    Article  PubMed  CAS  Google Scholar 

  • Hwang BJ, Park WJ, Chung CH, Goldberg AL (1987) Escherichia coli contains a soluble ATP-dependent protease (Ti) distinct from protease La. Proc Natl Acad Sci USA 84:5550–5554

    Article  PubMed  CAS  Google Scholar 

  • Jahnke LS, White AL (2003) Long-term hyposaline and hypersaline stresses produce distinct antioxidant responses in the marine alga Dunaliella tertiolecta. J Plant Physiol 160:1193–1202

    Article  PubMed  CAS  Google Scholar 

  • Johson ES (2004) Protein modification by SUMO. Ann Rev Biochem 73:355–382

    Article  Google Scholar 

  • Kakinuma M, Shibahara N, Ikeda H, Maegawa M, Amano H (2001) Thermal stress responses of a sterile mutant of Ulva pertusa (Chlorophyta). Fish Sci 67:287–294

    Article  CAS  Google Scholar 

  • Kakinuma M, Coury DA, Kuno Y, Itoh S, Kozawa Y, Inagaki E, Yoshiura Y, Amano H (2006) Physiological and biochemical responses to thermal and salinity stresses in a sterile mutant of Ulva pertusa (Ulvales, Chlorophyta). Mar Biol 149:97–106

    Article  CAS  Google Scholar 

  • Katayama-Fujimura Y, Gottesman S, Maurizi MR (1987) A multiple-component, ATP-dependent protease from Escherichia coli. J Biol Chem 262:4477–4485

    PubMed  CAS  Google Scholar 

  • Kirst GO (1990) Salinity tolerance of eukaryotic marine algae. Ann Rev Plant Physiol Plant Mol Biol 40:21–53

    Article  Google Scholar 

  • Koning AJ, Rose R, Comai L (1992) Developmental expression of tomato heat-shock cognate protein 80. Plant Physiol 100:801–811

    Google Scholar 

  • Kurepa J, Smalle JA (2008) Structure, function and regulation of plant proteasomes. Biochimie 90:324–335

    Article  PubMed  CAS  Google Scholar 

  • Laskowska E, Kuczynska-Wisnik D, Skorko-Glonek J, Taylor A (1996) Degradation by proteases Lon, Clp and HtrA, of Escherichia coli proteins aggregated in vivo by heat shock; HtrA protease action in vivo and in vitro. Mol Microbiol 22:555–571

    Article  PubMed  CAS  Google Scholar 

  • Levine A, Tenhaken R, Dixon R, Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583–593

    Article  PubMed  CAS  Google Scholar 

  • Lobban CS, Harrison PJ (1997) Seaweed ecology and physiology. Cambridge University Press, New York

    Google Scholar 

  • Lu IF, Sung MS, Lee TM (2006) Salinity stress and hydrogen peroxide regulation of antioxidant defense system in Ulva fasciata. Mar Biol 150:1–15

    Article  CAS  Google Scholar 

  • Machida T, Murase H, Kato E, Honjoh K, Matsumoto K, Miyamoto T, Iio M (2008) Isolation of cDNAs for hardening-induced genes from Chlorella vulgaris by suppression subtractive hybridization. Plant Sci 175:238–246

    Article  CAS  Google Scholar 

  • Meloni DA, Oliva MA, Martinez CA, Cambraia J (2003) Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot 49:69–76

    Article  CAS  Google Scholar 

  • Milioni D, Hatzopoulos P (1997) Genomic organization of Hsp90 gene family in Arabidopsis. Plant Mol Biol 35:955–961

    Article  PubMed  CAS  Google Scholar 

  • Nakabayashi K, Ito M, Kiyosue T, Shinozaki K, Watanabe A (1999) Identification of clp genes expressed in senescing Arabidopsis leaves. Plant Cell Physiol 40:504–514

    PubMed  CAS  Google Scholar 

  • Neuwald AF, Aravind L, Spouge JL, Koonin EV (1999) AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res 9:27–43

    PubMed  CAS  Google Scholar 

  • Nollen EA, Mmorimoto RI (2002) Chaperoning signaling pathways: molecular chaperones as stress-sensing ‘heat shock’ proteins. J Cell Sci 115:2809–2816

    PubMed  CAS  Google Scholar 

  • Packer A, Glazer AN (1990) Oxygen radicals in biological systems, part B. Oxygen radicals and antioxidants. Meth Enzymol 186:464–477

    Article  Google Scholar 

  • Palancade B, Doye V (2008) Sumoylating and desumoylating enzymes at nuclear pore: underpinning their expected duties? Trends Cell Biol 18:174–183

    Article  PubMed  CAS  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  PubMed  CAS  Google Scholar 

  • Pearson GA, Hoarau G, Lago-Leston A, Coyer JA, Kube M, Reinhardt R, Henckel K, Serrao ETA, Corre E, Olsen JL (2010) An expressed sequence tag analysis of the intertidal brown seaweeds Fucus serratus (L.) and F. vesiculosus (L.) (Heterokontophyta, Phaeophyceae) in response to abiotic stressors. Mar Biotechnol 12:195–213

    Article  PubMed  CAS  Google Scholar 

  • Porankiewicz J, Wang J, Clarke AK (1999) New insights into the ATP-dependent Clp protease: Escherichia coli and beyond. Mol Microbiol 32:449–458

  • Pratt WB, Morishima Y, Osawa Y (2008) The Hsp90 chaperone machinery regulates signaling by modulating ligand binding clefts. J Biol Chem 283:22885–22889

    Google Scholar 

  • Provasoli L (1968) Media and prospects for the cultivation of marine algae. In: Watanable A, Hattori A (eds) Cultures and collections of algae. Proceedings of the U.S., Japan Conference. Hakone. Japanese Society of Plant Physiology 1968, pp 63–75

  • Richter K, Buchner J (2001) Hsp90: chaperoning signal transduction. J Cell Physiol 188:281–290

    Article  PubMed  CAS  Google Scholar 

  • Rios-Gonzalez K, Erdei L, Lips SH (2002) The activity of antioxidant enzymes in maize and sunflower seedlings as affected by salinity and different nitrogen sources. Plant Sci 162:923–930

    Article  CAS  Google Scholar 

  • Sairam RK, Rao KV, Srivastava GC (2002) Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci 163:1037–1046

    Article  CAS  Google Scholar 

  • Sangster TA, Queitsch C (2005) The HSP90 chaperone complex, an emerging force in plant development and phenotypic plasticity. Cur Opin Biol 8:86–92

    Article  CAS  Google Scholar 

  • Schirmer EC, Glover JR, Singer MA, Lindquist S (1996) HSP100/Clp proteins: a common mechanism explains diverse functions. Trends Biochem Sci 21:289–296

    PubMed  CAS  Google Scholar 

  • Schroda M (2004) The Chlamydomonas genome reveals its secrets: chaperone genes and the potential roles of their gene products in the chloroplast. Photosynth Res 82:221–240

    Article  PubMed  CAS  Google Scholar 

  • Shanklin J, Dewitt ND, Flanagan JM (1995) The stroma of higher plant plastids contain ClpP and ClpC, functional homologs of Escherichia coli ClpP and ClpA: an archetypal two-component ATP-dependent protease. Plant Cell 7:1713–1722

    Article  PubMed  CAS  Google Scholar 

  • Sheoran IS, Garg OP (1978) Effect of salinity on the activities of RNase, DNase and protease during germination and early seedling growth of mungbean. Physiol Plant 44:171–174

    Article  CAS  Google Scholar 

  • Shiu CT, Lee TM (2005) Ultraviolet-B-induced oxidative stress and responses of the ascorbate-glutathione cycle in a marine macroalga Ulva fasciata. J Exp Bot 56:2851–2865

    Article  PubMed  CAS  Google Scholar 

  • Shringarpure R, Grune T, Mehlhase J, Davies KJ (2003) Ubiquitin conjugation is not required for the degradation of oxidized proteins by proteasome. J Biol Chem 278:311–318

    Google Scholar 

  • Singha S, Choudhuri MA (1990) Effect of salinity (NaCl) stress on H2O2 metabolism in Vigna and Oryza seedlings. Biochem Physiol Pflanzen 186:69–74

    CAS  Google Scholar 

  • Smalle J, Vierstra RD (2004) The ubiquitin 26S proteasome proteolytic pathway. Ann Rev Plant Biol 55:555–590

    Article  CAS  Google Scholar 

  • Song HM, Fan PX, Lio YX (2007) Overexpression of organellar and cytosolic AtHSP90 in Arabidopsis thaliana impairs plant tolerance to oxidative stress. Plant Mol Biol Report 27:342–349

    Article  Google Scholar 

  • Sung MS, Hsu YT, Hsu YT, Wu TM, Lee TM (2009) Hypersalinity and hydrogen peroxide upregulation of gene expression of antioxidant enzymes in Ulva fasciata against oxidative stress. Mar Biotechnol 11:199–209

    Article  PubMed  CAS  Google Scholar 

  • Teo SS, Ho CL, Teoh S, Rahim RA, Phang SM (2009) Transcriptomic analysis of Gracilaria changii (Rhodophyta) in response to hyper- and hypoosmotic stress. J Phycol 45:1093–1099

    Article  CAS  Google Scholar 

  • Timperio AM, Egidi MG, Zolla L (2008) Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP). J Proteomics 71:391–411

    Article  PubMed  CAS  Google Scholar 

  • Tominaga H, Coury DA, Amano H, Kakinuma M (2009) Isolation and characterization of a cDNA encoding a heat shock protein 70 from a sterile mutant of Ulva pertusa (Ulvales, Chlorophyta). Ecotoxicol 19:577–588

    Article  Google Scholar 

  • Usui M, Tanaka S, Miyasaka H, Suzuki Y, Shioi Y (2007) Characterization of cysteine protease induced by oxidative stress in cells of Chlamydomonas sp. strain W80. Physiol Plant 131:519–526

    Article  PubMed  CAS  Google Scholar 

  • Wang LJ, Liu YJ, Ma K, Wang JZ, Liu XN (1998) Effect of NaCl treatment on free radical metabolism of fig (Ficus cartica L.) calli. Adv Hortic 2:235–241

    Google Scholar 

  • Zhang XN, Qu ZC, Wan YZ, Zhang HW, Shen DL (2002) Application of suppression subtractive hybridization (SSH) to cloning differentially expressed cDNA in Dunaliella salina (Chlorophyta) under hyperosmotic shock. Plant Mol Biol Report 20:49–57

    Article  Google Scholar 

  • Zheng B, Halperin T, Hruskova-Heidingsfeldova O, Adam Z, Clarke AK (2002) Characterization of chloroplast Clp proteins in Arabidopsis: localization, tissue specificity and stress responses. Physiol Plant 114:92–101

    Google Scholar 

Download references

Acknowledgments

The grants from the National Science Council, Executive Yuan, Taiwan (NSC 96-2311-B-110- 002-MY3, NSC 97-2311-B-110-002, and NSC 98-2311-B-110-002) and the Kuroshio Research Group of Asia-Pacific Ocean Research Center of National Sun Yat-sen University, funded by the Ministry of Education, Executive Yuan, Taiwan, under the Grant-Aim for the Top University Plan, to Tse-Min Lee are appreciated. A post-doctoral grant from the National Science Council, Executive Yuan, Taiwan, to Dr. Kuan-Lin Ho is also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tse-Min Lee.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Table S1

Quantitative real-time PCR primers. (DOC 31 kb)

Supplementary Table S2

GSP and NSP primers (DOC 39 kb)

Supplementary Table S3

SSH clones. (DOC 98 kb)

Supplementary Fig. S1

(DOC 72 kb)

Supplementary Fig. S2

(DOC 41 kb)

Supplementary Fig. S3

(DOC 37 kb)

Supplementary Fig. S4

(DOC 62 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sung, MS., Hsu, YT., Ho, KL. et al. Implications of the Up-regulation of Genes Encoding Protein Degradation Enzymes and Heat Shock Protein 90 for Intertidal Green Macroalga Ulva fasciata Against Hypersalinity-Induced Protein Oxidation. Mar Biotechnol 13, 684–694 (2011). https://doi.org/10.1007/s10126-010-9330-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-010-9330-y

Keywords

Navigation