Skip to main content
Log in

Physiological and biochemical responses to thermal and salinity stresses in a sterile mutant of Ulva pertusa (Ulvales, Chlorophyta)

  • Mini-Review
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Like other organisms in the marine ecosystem, macroalgae are subjected to intense environmental stresses, particularly in the intertidal zone. The green seaweed Ulva inhabits rocky intertidal zones worldwide, suggesting that this alga may be a good model system for studying environmental stress responses in marine plants. Here, we review the physiological and biochemical responses to thermal and salinity stresses in a sterile mutant of Ulva pertusa. In response to high-temperature stress, the amount of photosynthetic pigments, major free amino acids (AA), and total carbon and nitrogen in U. pertusa increase. Changes in chemical components due to high-temperature stress are consistent with morphological changes in thalli subjected to high temperature and suggest that high-temperature stress mainly affects nitrogen metabolism. Isozyme assays show that the alga expresses a glutamate dehydrogenase isozyme in response to high-temperature stress, and that its expression was regulated at the mRNA transcription level. Chemical component changes due to salinity stress indicate a possibility that the low- and high-salinity conditions affect photosynthesis and carbon and nitrogen metabolism, respectively. In particular, it was observed that thalli exposed to hypersaline conditions rapidly accumulate the organic osmolyte proline, suggesting that free proline accumulation is an important tolerance mechanism in this alga for adapting to hypersaline conditions. Finally, we discuss future directions for the molecular analysis of environmental stress in U. pertusa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Amano H, Mizobata Y, Maegawa M, Rogerson A (1998) Production of d-cysteinolic acid, a platelet anti-aggregating amino acid, from clone cultured reproductively sterile Ulva pertusa (Ulvales, Chlorophyta). In: Menasveta P, Tanticharoen M (eds) Proceedings of the 2nd Asia-Pacific marine biotechnology conference and 3rd Asia-Pacific conference on algal biotechnology. National Center for Genetic Engineering and Biotechnology, Bangkok, pp 97–102

  • Bascomb NF, Schmidt RR (1987) Purification and partial kinetic and physical characterization of two chloroplast-localized NADP-specific glutamate dehydrogenase isozymes and their preferential accumulation in Chlorella sorokiniana cells cultured at low or high ammonium levels. Plant Physiol 83:75–84

    Article  CAS  Google Scholar 

  • Boston RS, Viitanen PV, Vierling E (1996) Molecular chaperones and protein folding in plants. Plant Mol Biol 32:191–222

    Article  CAS  Google Scholar 

  • Brown MT (1987) Effects of desiccation on photosynthesis of intertidal algae from a Southern New Zealand shore. Bot Mar 30:121–127

    Article  Google Scholar 

  • Cammaerts D, Jacobs M (1985) A study of the role of glutamate dehydrogenase in the nitrogen metabolism of Arabidopsis thaliana. Planta 163:517–526

    Article  CAS  Google Scholar 

  • Chapman ARO (1986) Population and community ecology of seaweeds. Adv Mar Biol 23:1–161

    Google Scholar 

  • Cock JM, Kim KD, Miller PW, Huston RG, Schmidt RR (1991) Restriction enzyme analysis and cloning of high molecular weight genomic DNA isolate from Chlorella sorokiniana (Chlorophyta). Plant Mol Biol 17:1023–1044

    Article  CAS  Google Scholar 

  • Davison IR, Pearson GA (1996) Stress tolerance in intertidal seaweeds. J Phycol 32:197–211

    Article  Google Scholar 

  • Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4:215–223

    Article  CAS  Google Scholar 

  • Edwards DM, Reed RH, Chudek JA, Foster R, Steward WDP (1987) Organic solute accumulation in osmotically-stressed Enteromorpha intestinalis. Mar Biol 95:583–592

    Article  CAS  Google Scholar 

  • Hare PD, Cress WA, van Staden J (1999) Proline synthesis and degradation: a model system for elucidating stress-regulated signal stansduction. J Exp Bot 50:413–434

    CAS  Google Scholar 

  • Haxen PG, Lewis OAM (1981) Nitrate assimilation in the marine kelp Macrocystis anguatifolia (Phaeophyceae). Bot Mar 24:631–635

    CAS  Google Scholar 

  • Hurd CL, Dring MJ (1991) Desiccation and phosphate uptake by intertidal fucoid algae in relation to zonation. Br Phycol J 26:327–333

    Article  Google Scholar 

  • Inokuchi R, Itagaki T, Wiskich JT, Nakayama K, Okada M (1997) An NADP-glutamate dehydrogenase from the green alga Bryopsis maxima: purification and properties. Plant Cell Physiol 38:327–335

    Article  CAS  Google Scholar 

  • Inokuchi R, Motojima K, Yagi Y, Nakayama K, Okada M (1999) Bryopsis maxima (Chlorophyta) glutamate dehydrogenase: multiple genes and isozymes. J Phycol 35:1013–1024

    Article  CAS  Google Scholar 

  • Ito T, Kito K, Adati N, Mitsui Y, Hagiwara H, Sasaki Y (1994) Fluorescent differential display: arbitrarily primed RT-PCR fingerprinting on an automated DNA sequencer. FEBS Lett 351:231–236

    Article  CAS  Google Scholar 

  • Joy KW (1988) Ammonia, glutamate and asparagine: a carbon-nitrogen interface. Can J Bot 66:2103–2109

    Article  CAS  Google Scholar 

  • Kakinuma M, Shibahara N, Ikeda H, Maegawa M, Amano H (2001a) Thermal stress responses of a sterile mutant of Ulva pertusa (Chlorophyta). Fish Sci 67:287–294

    Article  CAS  Google Scholar 

  • Kakinuma M, Kozawa Y, Itoh S, Amano H (2001b) cDNA cloning of two types of glutamate dehydrogenase from a reproductively sterile mutant of Ulva pertusa (Chlorophyta) grown under different thermal conditions. Fish Sci 67:380–382

    Article  CAS  Google Scholar 

  • Kakinuma M, Kuno Y, Amano H (2004a) Salinity stress responses of a sterile mutant of Ulva pertusa (Ulvales, Chlorophyta). Fish Sci 70:1177–1179

    Article  CAS  Google Scholar 

  • Kakinuma M, Coury DA, Inagaki E, Itoh S, Yoshiura Y, Amano H (2004b) Isolation and characterization of a single-copy actin gene from a sterile mutant of Ulva pertusa (Ulvales, Chlorophyta). Gene 334:145–155

    Article  CAS  Google Scholar 

  • Kavi Kishor PB, Hong Z, Miao GH, Hu CAA, Verma DPS (1995) Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394

    Article  Google Scholar 

  • Kirst GO (1990) Salinity tolerance of eukaryotic marine algae. Annu Rev Plant Physiol Plant Mol Biol 40:21–53

    Article  Google Scholar 

  • Kiyosue T, Toshiba Y, Yamaguchi-Shinozuka K, Shinozuka K (1996) A nuclear gene encoding mitochondrial proline dehydrogenase, an enzyme involved in proline metabolism, is upregulated by proline but downregulated by dehydration in Arabidopsis. Plant Cell 8:1323–1335

    Article  CAS  Google Scholar 

  • Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic and cold stress. Plant Physiol 130:2129–2141

    Article  CAS  Google Scholar 

  • Kúbler JE, Davison IR (1993) High temperature tolerance of photosynthesis in the red alga Chondrus crispus. Mar Biol 117:327–335

    Article  Google Scholar 

  • Lam HM, Coschigano KT, Oliveira IC, Melo-Oliveira R, Coruzzi GM (1996) The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Ann Rev Plant Physiol Plant Mol Biol 47:569–593

    Article  CAS  Google Scholar 

  • Liu CH, Shih MC, Lee TM (2000) Free proline levels in Ulva (Chlorophyta) in response to hypersalinity: elevated NaCl in seawater versus concentrated seawater. J Phycol 36:118–119

    Article  CAS  Google Scholar 

  • Lobban CS (1985) Seashore communities. In: Lobban CS, Harrison PJ, Duncan MJ (eds) The physiological ecology of seawater. Cambridge University Press, Cambridge, pp 154–187

    Google Scholar 

  • Loulakakis CA, Roubelakis-Angelakis KA, Kanellis AK (1994) Regulation of glutamate dehydrogenase and glutamine synthetase in avocado fruit during development and ripening. Plant Physiol 106:217–222

    Article  CAS  Google Scholar 

  • Lüning K (1984) Temperature tolerance and biogeography of seaweeds: the marine algal flora of Helgoland, North Sea, as an example. Helgolander Meeresun 38:305–317

    Article  Google Scholar 

  • Maegawa M, Sugiyama A (1995) Relationship between heat tolerance and the vertical distribution of intertidal algae. Suisanzoshoku 43:429–435

    Google Scholar 

  • Melo-Oliveira R, Oliveira IC, Coruzzi GM (1996) Arabidopsis mutant analysis and gene regulation define a nonredundant role for glutamate dehydrogenase in nitrogen assimilation. Proc Natl Acad Sci USA 93:4718–4723

    Article  CAS  Google Scholar 

  • Miernyk JA (1999) Protein folding in the plant cell. Plant Physiol 121:695–703

    Article  CAS  Google Scholar 

  • Migita S (1985) The sterile mutant of Ulva pertusa Kjellman from Oumra Bay. Bull Fac Fish Nagasaki Univ 57:33–37

    Google Scholar 

  • Muñouz-Blanco J, Moyano E, Cárdenas J (1989) Glutamate dehydrogenase isozymes of Chlamydomonas reinhardtii. FEMS Microbiol Lett 61:315–318

    Article  Google Scholar 

  • Murase N, Maegawa M, Matsui T, Ohgai T, Katayama N, Saitoh M, Yokohama Y (1993) Growth and photosynthesis temperature characteristics of the sterile Ulva pertusa. Nippon Suisan Gakkaishi 60:625–630

    Article  Google Scholar 

  • Murthy MS, Rao AS, Reddy ER (1986) Dynamics of nitrate reductase activity in two intertidal algae under desiccation. Bot Mar 24:471–474

    Google Scholar 

  • Murthy MS, Rao AS, Faldu PJ (1988) Invertase and total amylase activities in Ulva lactuca from different tidal levels, under desiccation. Bot Mar 31:53–56

    CAS  Google Scholar 

  • Murthy MS, Sharma CLNS (1989) Peroxidase activity in Ulva lactuca under desiccation. Bot Mar 32:511–513

    CAS  Google Scholar 

  • Norton TA (1986) The zonation of seaweeds on rocky shores. In: Moore PG, Seed R (eds) The ecology of rocky coasts. Columbia University Press, New York, pp 7–21

    Google Scholar 

  • Nuccio ML, Rhodes D, McNeil SD, Hanson AD (1999) Metabolic engineering of plants for osmotic stress resistance. Curr Opin Plant Biol 2:128–134

    Article  CAS  Google Scholar 

  • Oask A (1994) Primary nitrogen assimilation in higher plants and its regulation. Can J Bot 72:739–750

    Article  Google Scholar 

  • Osteryoung KW, Vierling E (1994) Dynamics of small heat shock protein distribution within the chloroplasts of higher plants. J Biol Chem 269:28676–28682

    CAS  PubMed  Google Scholar 

  • Provasoli L (1968) Media and prospects for the cultivation of marine algae. In: Watanabe A, Hattori A (eds) Culture and collection of algae. Proceedings of U.S.–Japan conference in Hakone. Japanese Society of Plant Physiologists, Tokyo, pp 63–75

  • Quadir A, Harrison PJ, DeWreede RE (1979) The effects of emergence and submergence on the photosynthesis and respiration of marine macrophytes. Phycologia 18:83–88

    Article  CAS  Google Scholar 

  • Rhodes D, Brunk DG, Magalhaes RJ (1989) Assimilation of ammonia by glutamate dehydrogenase? In: Poulton JE, Romeo JT, Conn EE (eds) Plant nitrogen metabolism, vol 5. Plenum, New York, pp 191–206

    Chapter  Google Scholar 

  • Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol 44:357–384

    Article  CAS  Google Scholar 

  • Robinson SA, Slade AP, Fox GG, Phillips R, Ratcliffe RG, Stewart GR (1991) The role of glutamate dehydrogenase in plant nitrogen metabolism. Plant Physiol 95:509–516

    Article  CAS  Google Scholar 

  • Rosana MO, Oliveira IC, Coruzzi GM (1996) Arabidopsis mutant analysis and gene regulation define a nonredundant role for glutamate dehydrogenase in nitrogen assimilation. Proc Natl Acad Sci USA 93:4718–4723

    Article  Google Scholar 

  • Sachs MM, Ho THD (1986) Alteration of gene expression during environmental stress in plants. Ann Rev Plant Physiol 37:363–376

    Article  CAS  Google Scholar 

  • Sakakibara H, Fujii K, Sugiyama T(1995) Isolation and characterization of a cDNA that encodes maize glutamate dehydrogenase. Plant Cell Physiol 36:789–797

    Article  CAS  Google Scholar 

  • Sato M, Sato Y, Tsuchiya Y (1984) Glutamate dehydrogenase of Porphyra yezoensis. Hydrobiologoa 116/117:584–587

    Article  Google Scholar 

  • Seemann JR, Critchley C (1985) Effects of salt stress on the growth, ion content, stomatal behavior and photosynthetic capacity of a salt-sensitive species, Phaseolus vulgaris L. Planta 164:151–162

    Article  CAS  Google Scholar 

  • Shaw CR, Prasad R (1970). Starch gel electrophoresis of enzymes: a compilation of recipes. Biochem Genet 4:297–320

    Article  CAS  Google Scholar 

  • Sieciechowicz KA, Joy KW, Ireland RJ (1988) The metabolism of asparagine in plants. Phytochem 27:663–671

    Article  CAS  Google Scholar 

  • Singh RP (1995) Ammonia assimilation. In: Srivastava HS, Singh RP (eds) Nitrogen nutrition in higher plants. Associated Publishing, New Delhi, pp 189–202

    Google Scholar 

  • Smith CM, Berry JA (1986) Recovery of photosynthesis after exposure of intertidal algae to osmotic and temperature stresses: comparative studies of species with different distributional limits. Oecologia 70:6–12

    Article  Google Scholar 

  • Srivastava HS, Singh RP (1987) Role and regulation of L-glutamate dehydrogenase activity in higher plants. Phytochem 26:597–610

    Article  CAS  Google Scholar 

  • Stewart GR, Mann AF, Fentem PA (1980) Enzymes of glutamate formation: glutamate dehydrogenasse, glutamine synthetase and glutamate synthase. In: Miflin BJ (ed) The biochemistry of plants, vol 5. Academic, New York, pp 271–327

    Chapter  Google Scholar 

  • Syntichaki KM, Loulakakis KA, Roubelakis-Angelakis KA (1996) The amino-acid sequence similarity of plant glutamate dehydrogenase to the extremophilic archaeal enzyme conforms to its stress-related function. Gene 168:87–92

    Article  CAS  Google Scholar 

  • Tarczynski MC, Jensen RG, Bohnert HJ (1993) Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science 259:508–510

    Article  CAS  Google Scholar 

  • Thomas TE, Turpin DH (1980) Desiccation enhanced nutrient uptake rates in the intertidal alga Fucus distichus. Bot Mar 23:479–481

    CAS  Google Scholar 

  • Turano FJ, Thakkar SS, Fang T, Weisemann JM (1997) Characterization and expression of NAD(H)-dependent glutamate dehydrogenase genes in Arabidopsis. Plant Physiol 113:1329–1341

    Article  CAS  Google Scholar 

  • Ueda A, Kanechi M, Uno Y, Inagaki N (2003) Photosynthetic limitations of a halophyte sea aster (Aster tripolium L.) under water stress and NaCl stress. J Plant Res 116:65–70

    CAS  PubMed  Google Scholar 

  • Withholm JM (1972) The use of fluoresce in diacetate and phemosafranine for determining viability of cultured plant cells. Stain Technol 47:189–194

    Article  Google Scholar 

  • Yoshiba Y, Kiyosue T, Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (1997) Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol 38:1095–1102

    Article  CAS  Google Scholar 

  • Zehr PJ, Falkowski PG (1988) Pathway of ammonium assimilattion in a marine diatom determined with the radiotracer 13N. J Phycol 24:588–591

    CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture of Japan. We thank Dr. M. Maegawa of the Faculty of Bioresources, Mie University, Japan, and Dr. T. Morita of the Marine Productivity Division of National Research Institute of Fisheries Science, Japan, for help with the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kakinuma.

Additional information

Communicated by R. Cattaneo-Vietti, Genova

Physical and Chemical Impacts on Marine Organisms, a Bilateral Seminar Italy–Japan held in November 2004

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kakinuma, M., Coury, D.A., Kuno, Y. et al. Physiological and biochemical responses to thermal and salinity stresses in a sterile mutant of Ulva pertusa (Ulvales, Chlorophyta). Marine Biology 149, 97–106 (2006). https://doi.org/10.1007/s00227-005-0215-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-005-0215-y

Keywords

Navigation