Skip to main content
Log in

Cell Wall Regeneration in Bangia atropurpurea (Rhodophyta) Protoplasts Observed Using a Mannan-Specific Carbohydrate-Binding Module

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

The cell wall of the red alga Bangia atropurpurea is composed of three unique polysaccharides (β-1,4-mannan, β-1,3-xylan, and porphyran), similar to that in Porphyra. In this study, we visualized β-mannan in the regenerating cell walls of B. atropurpurea protoplasts by using a fusion protein of a carbohydrate-binding module (CBM) and green fluorescent protein (GFP). A mannan-binding family 27 CBM (CBM27) of β-1,4-mannanase (Man5C) from Vibrio sp. strain MA-138 was fused to GFP, and the resultant fusion protein (GFP–CBM27) was expressed in Escherichia coli. Native affinity gel electrophoresis revealed that GFP–CBM27 maintained its binding ability to soluble β-mannans, while normal GFP could not bind to β-mannans. Protoplasts were isolated from the fronds of B. atropurpurea by using three kinds of bacterial enzymes. The GFP–CBM27 was mixed with protoplasts from different growth stages, and the process of cell wall regeneration was observed by fluorescence microscopy. Some protoplasts began to excrete β-mannan at certain areas of their cell surface after 12 h of culture. As the protoplast culture progressed, β-mannans were spread on their entire cell surfaces. The percentages of protoplasts bound to GFP–CBM27 were 3%, 12%, 17%, 29%, and 25% after 12, 24, 36, 48, and 60 h of culture, respectively. Although GFP–CBM27 bound to cells at the initial growth stages, its binding to the mature fronds was not confirmed definitely. This is the first report on the visualization of β-mannan in regenerating algal cell walls by using a fluorescence-labeled CBM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andrews JH (1979) The pathology of marine algae. Experientia 35:429–570

    Article  Google Scholar 

  • Araki T, Hayakawa M, Tamaru Y, Yoshimatsu K, Morishita T (1994) Isolation and regeneration of haploid protoplasts from Bangia atropurpurea (Rhodophyta) with marine bacterial enzymes. J Phycol 30:1040–1046

    Article  Google Scholar 

  • Araki T, Hayakawa M, Lu Z, Karita S, Morishita T (1998) Purification and characterization of agarases from a marine bacterium, Vibrio sp. PO-303. J Mar Biotechnol 6:260–265

    PubMed  Google Scholar 

  • Bolam DN, Xie HF, Pell G, Hogg D, Galbraith G, Henrissat B, Gilbert HJ (2004) X4 modules represent a new family of carbohydrate-binding modules that display novel properties. J Biol Chem 279:22953–22963

    Article  CAS  PubMed  Google Scholar 

  • Boraston AB, Bolam DN, Gilbert HJ, Davies GJ (2004) Carbohydrate-binding modules: fine tuning polysaccharide recognition. Biochem J 382:769–781

    Article  CAS  PubMed  Google Scholar 

  • Bouarab K, Potin P, Correa J, Kloareg B (1999) Sulfated oligosaccharides mediate the interaction between a marine red alga and its green algal pathogenic endophyte. The Plant Cell 11:1–17

    Article  Google Scholar 

  • Carlson PS (1973) The use of protoplasts for genetic research. Proc Natl Acad Sci U S A 70:598–602

    Article  CAS  PubMed  Google Scholar 

  • Critchley AT, Ohno M (1998) Seaweed resources of the world. Japan International Cooperation Agency, Tokyo, p 431

    Google Scholar 

  • Daniel G, Filonova L, Kallas AM, Teeri TT (2006) Morphological and chemical characterisation of the G-layer in tension wood fibres of Populus tremula and Betula verrucosa: labelling with cellulose-binding module CBM 1HjCel7A and fluorescence and FE-SEM microscopy. Holzforchung 60:618–624

    Article  CAS  Google Scholar 

  • Ding SY, Xu Q, Ali MK, Baker JO, Bayer EA, Barak Y, Lamed R, Sugiyama J, Rumbles G, Himmel ME (2006) Versatile derivatives of carbohydrate-binding modules for imaging of complex carbohydrates approaching the molecular level of resolution. Biotechniques 41:435–436

    Article  CAS  PubMed  Google Scholar 

  • Dong J, Tamaru Y, Araki T (2007) A unique β-agarase, AgaA, from a marine bacterium, Vibrio sp. strain PO-303. Appl Microbiol Biotechnol 74:1248–1255

    Article  CAS  PubMed  Google Scholar 

  • Filonova L, Gunnarsson LC, Daniel G, Ohlin M (2007a) Synthetic xylan-binding modules for mapping of pulp fibres and wood sections. BMC Plant Biol 7:54

    Article  PubMed  Google Scholar 

  • Filonova L, Kallas AM, Greffe L, Johansson G, Teeri TT, Daniel G (2007b) Analysis of the surfaces of wood tissues and pulp fibers using carbohydrate-binding modules specific for crystalline cellulose and mannan. Biomacromolecules 8:91–97

    Article  CAS  PubMed  Google Scholar 

  • Freelove AC, Bolam DN, White P, Hazlewood GP, Gilbert HJ (2001) A novel carbohydrate-binding protein is a component of the plant cell wall-degrading complex of Piromyces equi. J Biol Chem 276:43010–43017

    Article  CAS  PubMed  Google Scholar 

  • Fujita Y (1990) Diseases of cultivated Porphyra in Japan. In: Akatsuka I (ed) Introduction to applied phycology. SPB Academic, Hague, pp 177–190

    Google Scholar 

  • Fujita Y, Uppalapati SR (1997) Genetic improvement of Porphyra through cell culture techniques: present status and future prospects. Nat His Res 3:71–81

    Google Scholar 

  • Galbraith DW (1981) Microfluorimetric quantitation of cellulose biosynthesis by plant protoplasts using Calcofluor White. Physiol Plant 53:111–116

    Article  CAS  Google Scholar 

  • Gretz MR, Sommerfeld MR, Aronson JM (1982) Cell wall composition of the genetic phase of Bangia atropurpurea (Rhodophyta). Bot Mar 25:529–535

    Article  CAS  Google Scholar 

  • Hahne G, Herth W, Hoffmann F (1983) Wall formation and cell division in fluorescence-labelled plant protoplasts. Protoplasma 115:217–221

    Article  Google Scholar 

  • Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316

    CAS  PubMed  Google Scholar 

  • Henrissat B, Bairoch A (1996) Updating the sequence-based classification of glycosyl hydrolases. Biochem J 316:695–696

    PubMed  Google Scholar 

  • Hildén L, Daniel G, Johansson G (2003) Use of a fluorescence labelled, carbohydrate-binding module from Phanerochaete chrysosporium Cel7D for studying wood cell wall ultrastructure. Biotechnol Lett 25:553–558

    Article  PubMed  Google Scholar 

  • Iriki Y, Suzuki T, Nisizawa K, Miwa T (1960) Xylan of siphonaceous green algae. Nature 187:82–83

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Love J, Percival E (1964) The polysaccharides of green seaweed Codium fragile. Part III. A β-linked mannan. J Chem Soc 3345–3350

  • Lowry OH, Rosebrouigh NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Maeda H, Ishida N (1967) Specificity of binding of hexapyranosyl polysaccharides with fluorescent brightener. J Biochem 62:276–278

    CAS  PubMed  Google Scholar 

  • McCartney L, Gilbert HJ, Bolam DN, Boraston AB, Knox JP (2004) Glycoside hydrolase carbohydrate-binding modules as molecular probes for the analysis of plant cell wall polymers. Anal Biochem 326:49–54

    Article  CAS  PubMed  Google Scholar 

  • McCartney L, Blake AW, Flint J, Bolam DN, Boraston AB, Gilbert HJ, Knox JP (2006) Differential recognition of plant cell walls by microbial xylan-specific carbohydrate-binding modules. Proc Natl Acad Sci U S A 103:4765–4770

    Article  CAS  PubMed  Google Scholar 

  • McDowell RH (1967) Chemistry and enzymology of marine algal polysaccharides. Academic, London, pp 88–96 134–137

    Google Scholar 

  • Mumford TF Jr, Miura A (1988) Porphyra as food: cultivation and economics. In: Lembi CA, Walland RJ (eds) Algae and human affairs. Cambridge University Press, London, pp 87–117

    Google Scholar 

  • Nagata T, Takebe I (1970) Cell wall regeneration and cell division in isolated tobacco mesophyll protoplasts. Planta 92:301–308

    Article  Google Scholar 

  • Okazaki F, Tamaru Y, Hashikawa S, Li YT, Araki T (2002) Novel carbohydrate-binding module of β-1, 3-xylanase from a marine bacterium, Alcaligenes sp. strain XY-234. J Bacteriol 184:2399–2403

    Article  CAS  PubMed  Google Scholar 

  • Porter SE, Donohoe BS, Beery KE, Xu Q, Ding SY, Vinzant TB, Abbas CA, Himmel ME (2007) Microscopic analysis of corn fiber using starch- and cellulose-specific molecular probes. Biotechnol Bioeng 98:123–131

    Article  CAS  PubMed  Google Scholar 

  • Potin P, Bouarab K, Küpper F, Kloareg B (1999) Oligosaccharide recognition signals and defence reactions in marine plant–microbe interactions. Curr Opin Microbiol 2:276–283

    Article  CAS  PubMed  Google Scholar 

  • Provasoli L, McLaughlin JJA, Droop MR (1957) The development of artificial media for marine algae. Arch Microbiol 25:392–428

    CAS  Google Scholar 

  • Sambrook H, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sommerfeld MR, Nichols HW (1970) Developmental and cytological studies of Bangia fuscopurpurea in culture. Am J Bot 57:640–648

    Article  Google Scholar 

  • Somogyi M (1952) Notes on sugar determination. J Biol Chem 195:19–23

    CAS  Google Scholar 

  • Stoll DB, Stalbrand H, McLean BW, Kilburn DG, Warren RAJ (2000) Mannanase Man26A from Cellulomonas fimi has a mannan-binding module. FEMS Microbiol Letters 183:265–269

    Article  CAS  Google Scholar 

  • Sunna A, Gibbs MD, Bergquist PL (2001) Identification of novel beta-mannan- and beta-glucan-binding modules: evidence for a superfamily of carbohydrate-binding modules. Biochem J 356:791–798

    Article  CAS  PubMed  Google Scholar 

  • Tanaka M, Umemoto Y, Okamura H, Nakano D, Tamaru Y, Araki T (2009) Cloning and characterization of a β-1, 4-mannanase 5C possessing a family 27 carbohydrate-binding module from a marine bacterium, Vibrio sp. strain MA-138. Biosci Biotechnol Biochem 73:109–116

    Article  CAS  PubMed  Google Scholar 

  • Uppalapati SR, Fujita Y (2000) Carbohydrate regulation of attachment, encystment, and appressorium formation by Pythium porphyrae (Oomycota) zoospores on Porphyra yezoensis (Rhodophyta). J Phycol 36:359–366

    Article  CAS  Google Scholar 

  • Vreeland V, Kloareg B (2000) Cell wall biology in red algae: divide and conquer. J Phycol 36:793–797

    Article  Google Scholar 

  • Weinberger F, Friedlander M, Hoppe HG (1999) Oligoagars elicit a physiological response in Gracilaria conferta (Rhodophyta). J Phycol 35:747–755

    Article  CAS  Google Scholar 

  • Wood PJ (1980) Specificity in the interaction of direct dyes with polysaccharides. Carbohydr Res 85:271–287

    Article  CAS  Google Scholar 

  • Yamaura I, Matsumoto T, Funatsu M, Mukai E (1990) Purification and some properties of endo-1, 3-β-d-xylanase from Pseudomonas sp. PT-5. Agric Biol Chem 54:921–926

    CAS  PubMed  Google Scholar 

  • Youngs HL, Gretz MR, West JA, Sommerfeld MR (1998) The cell wall chemistry of Bangia atropurpurea (Bangiales, Rhodophyta) and Bostrychia moritziana (Ceramiales, Rhodophyta) from marine and freshwater environments. Phycol Res 46:63–73

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank S. Karita from Mie University for the valuable information provided for this paper. This study was supported by a Grant-in-Aid for Scientific Research (C; no. 19580235, 2007-2008) by the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyoshi Araki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Umemoto, Y., Araki, T. Cell Wall Regeneration in Bangia atropurpurea (Rhodophyta) Protoplasts Observed Using a Mannan-Specific Carbohydrate-Binding Module. Mar Biotechnol 12, 24–31 (2010). https://doi.org/10.1007/s10126-009-9196-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-009-9196-z

Keywords

Navigation