Skip to main content

Advertisement

Log in

Cnidarians Biomineral in Tissue Engineering: A Review

  • Invited Review
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Biomineralization is the process by which organisms precipitate minerals. Crystals formed in this way are exploited by the organisms for a variety of purposes, including mechanical support and protection of soft tissue. Skeletal precipitation, via millions of years of evolution, has produced a wide variety of architectural configurations and material properties. It is exactly these properties that now attract the attention of researchers searching for new materials for a variety of biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ECM:

extracellular matrix

CNS:

central nervous system

MSCs:

mesenchymal stem cells

References

  • Abramovitch-Gottlib L, Geresh S, Vago R (2006) Biofabricated marine hydrozoan: a bioactive crystalline material promoting ossification of mesenchymal stem cells. Tissue Eng 12(4):729–739

    Article  PubMed  CAS  Google Scholar 

  • Achituv Y, Dubinsky Z (1990) Evolution and zoography of coral reefs. In: Dubinsky Z (ed) Coral reefs. Ecosystems of the world. vol. 25. Elsevier, Amsterdam, pp 1–9

    Google Scholar 

  • Aizenberg J, Sundar VC, Yablon AD, Weaver JC, Chen G (2004) Biological glass fibers: correlation between optical and structural properties. Proc Natl Acad Sci USA 101(10):3358–3363

    Article  PubMed  CAS  Google Scholar 

  • Al-Salihi KA (2004) Tissue-engineered bone via seeding bone marrow stem cell derived osteoblasts into coral: a rat model. Med J Malays 59(Suppl B):200

    Google Scholar 

  • Al-Salihi KA, Samsudin AR (2004a) Bone marrow mesenchymal stem cells differentiation and proliferation on the surface of coral implant. Med J Malays 59(Suppl B):45

    Google Scholar 

  • Al-Salihi KA, Samsudin AR (2004b) Coral-polyhydroxybutrate composite scaffold for tissue engineering: prefabrication properties. Med J Malays 59(Suppl B):202

    Google Scholar 

  • Anselme K (2000) Osteoblast adhesion on biomaterials. Biomaterials 21(7):667–681

    Article  PubMed  CAS  Google Scholar 

  • Aubin JE, Heersch JNM (2000) Osteoprogenitor cell differentiation to mature bone-forming osteoblasts. Drug Develop Res 49:206–215

    Article  CAS  Google Scholar 

  • Baranes D, Cove J, Blinder P, Shany B, Peretz H, Vago R (2007) Gigantic ganglion-like neural cell spheres formed on hydrozoan skeleton. Tissue Eng 13:473–482

    Google Scholar 

  • Barnes DJ, Chalker BE (1990) Calcification and photosynthesis in reef-building corals and algae. In: Dubinsky Z (ed) Coral reefs. Ecosystems of the world. vol. 25. Elsevier, Amsterdam, pp 109–131

    Google Scholar 

  • Ben-Nissan B, Milev A, Vago R (2004) Morphology of sol–gel derived nano-coated coralline hydroxyapatite. Biomaterials 25(20):4971–4975

    Article  PubMed  CAS  Google Scholar 

  • Bilezikian JP, Raisz LG, Rodan GA (eds) (2002) Principles of Bone Biology, Second edition. Academic Press, New York

  • Birk RZ, Abramovitch-Gottlib L, Margalit I, Aviv M, Forti E, Geresh S, Vago R (2006) Conversion of adipogenic to osteogenic phenotype using crystalline porous biomatrices of marine origin. Tissue Eng 12(1):21–31

    Article  PubMed  CAS  Google Scholar 

  • Brown RA (2002) Tissue engineering: clinical applications and mechanical control. In: Polak JM, Hench LL, Kemp P (eds) Future strategies for tissue and organ replacement. Imperial College, London, pp 51–78

    Google Scholar 

  • Damien CJ, Parsons JR (1991) Bone graft and bone graft substitutes: a review of current technology and applications. J Appl Biomater 2(3):187–208

    Article  PubMed  CAS  Google Scholar 

  • Demers C, Hamdy CR, Corsi K, Chellat F, Tabrizian M, Yahia L (2002) Natural coral exoskeleton as a bone graft substitute: a review. Biomed Mater Eng 12(1):15–35

    PubMed  Google Scholar 

  • Devecioglu D, Tozum TF, Sengun D, Nohutcu RM (2004) Biomaterials in periodontal regenerative surgery: effects of cryopreserved bone, commercially available coral, demineralized freeze-dried dentin, and cementum on periodontal ligament fibroblasts and osteoblasts. J Biomater Appl 19(2):107–120

    Article  PubMed  Google Scholar 

  • Dickson DW (2004) Apoptotic mechanisms in Alzheimer neurofibrillary degeneration: cause or effect? J Clin Invest 114(1):23–27

    PubMed  CAS  Google Scholar 

  • Doherty MJ, Schlag G, Schwarz N, Mollan RA, Nolan PC, Wilson DJ (1994) Biocompatibility of xenogeneic bone, commercially available coral, a bioceramic and tissue sealant for human osteoblasts. Biomaterials 15(8):601–608

    Article  PubMed  CAS  Google Scholar 

  • Dowling JE (1992) Neurons and networks. Harvard University Press, London

    Google Scholar 

  • Ducy P, Schinke T, Karsenty G (2000) The osteoblast: a sophisticated fibroblast under central surveillance. Science 289(5484):1501–1504

    Article  PubMed  CAS  Google Scholar 

  • Evans GRD (2000) Challenges to nerve regeneration. Semin Surg Oncol 19(3):312–318

    Article  PubMed  CAS  Google Scholar 

  • Fitch MT, Silver J (1997) Glial cell extracellular aragonite template: boundaries for axon growth in development and regeneration. Cell Tissue Res 290:379

    Article  PubMed  CAS  Google Scholar 

  • Fricain JC, Bareille R, Ulysse F, Dupuy B, Amedee J (1998) Evaluation of proliferation and protein expression of human bone marrow cells cultured on coral crystallized in the aragonite of calcite form. J Biomed Mater Res 42:96

    Article  PubMed  CAS  Google Scholar 

  • Gravel M, Gross T, Vago R, Tabrizian M (2006) Responses of mesenchymal stem cell to chitosan–coralline composites microstructured using coralline as a gas forming agent. Biomaterials 27(9):1899–1906

    Article  PubMed  CAS  Google Scholar 

  • Green D, Walsh D, Mann S, Oreffo RO (2002) The potential of biomimesis in bone tissue engineering: lessons from the design and synthesis of invertebrate skeletons. Bone 30(6):810–815

    Article  PubMed  CAS  Google Scholar 

  • Guillemin G, Meunier A, Dallant P, Christel P, Pouliquen JC, Sedel L (1989) Comparison of coral resorption and bone apposition with two natural corals of different porosities. J Biomed Mater Res 23:765

    Article  PubMed  CAS  Google Scholar 

  • Hou R, Chen FL, Yang YW, Cheng XB, Gao Z, Yang HWO, Wu W, Mao TQ (2007) Comparative study between coral–mesenchymal stem cells–rhBMP-2 composite and auto-bone-graft in rabbit critical-sized cranial defect model. J Biomed Mater Res A 80a(1):85–93

    Article  CAS  Google Scholar 

  • Hu J, Fraser R, Russell J, Ben-Nissan B, Vago R (2000) Australian coral as a biomaterial: characteristics. J Mater Sci Technol 16:591–602

    CAS  Google Scholar 

  • Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926

    Article  PubMed  CAS  Google Scholar 

  • LeGeros RZ (2002) Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res 395:81–98

    Article  PubMed  Google Scholar 

  • Lewis JB (2006) Biology and ecology of the hydrocoral Millepora on coral reefs. Adv Mar Biol 50:1–55

    Article  PubMed  Google Scholar 

  • Liao H, Mutvei H, Sjostrom M, Hammarstrom L, Li J (2000) Tissue responses to natural aragonite (Margaritifera shell) implants in vivo. Biomaterials 21:457

    Article  PubMed  CAS  Google Scholar 

  • Long MW (2001) Osteogenesis and bone-marrow-derived cells. Blood Cells Mol Dis 27(3):677–690

    Article  PubMed  CAS  Google Scholar 

  • Marks SC, Odgren PR (2002) In: Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of bone biology. 2nd edn. Academic, New York

  • Martin RB, Burr DB, Sharkey NA (1998) Skeletal tissue mechanics. Springer, Berlin, pp 29–78

    Google Scholar 

  • Northington FJ, Graham EM, Martin LJ (2005) Apoptosis in perinatal hypoxicis-chemic brain injury: how important is it and should it be inhibited. Brain Res Rev 50(2):244–257

    PubMed  CAS  Google Scholar 

  • Ohgushi H (1997) Coral derived porous framework having different chemical compositions as a scaffold for osteoblastic differentiation. Porous Mat Tissue Eng Mat Sci Forum 250:209–220

    CAS  Google Scholar 

  • Ohgushi H, Okumura M, Yoshikawa T, Inoue K, Senpuku N, Tamai S, Shors EC (1992) Bone-formation process in porous calcium-carbonate and hydroxyapatite. J Biomed Mater Res 26(7):885–895

    Article  PubMed  CAS  Google Scholar 

  • Peretz H, Talpalar A, Vago R, Baranes D (2007) Hippocampal astrocytes and neurons grown on aragonite biomatrices have superior survival rate and durability than when grown in two-dimensional cultures. Tissue Eng 13:461–472

    Google Scholar 

  • Petite H, Viateau V, Bensaid W, Meunier A, de Pollak C, Bourguignon M, Oudina K, Sedel L, Guillemin G (2000) Tissue-engineered bone regeneration. Nat Biotechnol 18(9):959–963

    Article  PubMed  CAS  Google Scholar 

  • Phillips JB, Bunting SCJ, Hall SM, Brown RA (2005) Neural tissue engineering: a self-organizing collagen guidance conduit. Tissue Eng 11(9–10):1611–1617

    Article  PubMed  CAS  Google Scholar 

  • Reier PJ, Houle JD (1988) The glial scar: its bearing on axonal elongation and transplantation approaches to CNS repair. Adv Neurol 47:87

    PubMed  CAS  Google Scholar 

  • Rodan GA (1992) Introduction to bone biology. Bone 13(Suppl 1):S3–S6

    Article  PubMed  CAS  Google Scholar 

  • Roudier M, Bouchon C, Rouvillain JL, Amedee J, Bareille R, Rouais F, Fricain JC, Dupuy B, Kien P, Jeandot R et al (1995) The resorption of bone-implanted corals varies with porosity but also with the host reaction. J Biomed Mater Res 29(8):909–915

    Article  PubMed  CAS  Google Scholar 

  • Ruppert EE, Barnes RD (1994) Invertebrate zoology, 6th edn. Saunders College, Philadelphia

    Google Scholar 

  • Schmidt CE, Leach JB (2003) Neural tissue engineering: strategies for repair and regeneration. Annu Rev Biomed Eng 5:293

    Article  PubMed  CAS  Google Scholar 

  • Shany B, Peretz H, Blinder P, Lichtenfeld Y, Jeger R, Vago R, Baranes D (2006) Aragonite crystalline biomatrices support astrocytic tissue formation in vitro and in vivo. Tissue Eng 12:1763–1773

    Article  PubMed  CAS  Google Scholar 

  • Shany B, Vago R, Baranes D (2005) Growth of primary hippocampal neuronal tissue on aragonite crystalline biomatrix. Tissue Eng 11:586–596

    Article  Google Scholar 

  • Sikavitsas VI, Temenoff JS, Mikos AG (2001) Biomaterials and bone mechanotransduction. Biomaterials 22(19):2581–2593

    Article  PubMed  CAS  Google Scholar 

  • Simkiss K, Wilbur KM (eds) (1989) Biomineralization. Academic, New York

  • Sundar VC, Yablon AD, Grazul JL, Ilan M, Aizenberg J (2003) Fibre-optical features of a glass sponge—some superior technological secrets have come to light from a deep-sea organism. Nature 424:899–900

    Article  PubMed  CAS  Google Scholar 

  • Tian WM, Hou SP, Ma J, Zhang CL, Xu QY, Lee IS, Li HD, Spector M, Cui FZ (2005) Hyaluronic acid-poly-D-lysine-based three-dimensional hydrogel for traumatic brain injury. Tissue Eng 11(3–4):513–525

    Article  PubMed  CAS  Google Scholar 

  • Vago R, Shai Y, Benzion M, Dubinsky Z, Achituv Y (1994) Computerized-tomography and image-analysis. A tool for examining the skeletal characteristics of reef-building organisms. Limnol Oceanogr 39:448

    Google Scholar 

  • Vago R, Gill E, Collingwood JC (1997) Laser measurements of coral growth. Nature 386(6620):30–31

    Article  CAS  Google Scholar 

  • Vago R, Achituv Y, Vaky L, Dubinsky Z, Kizner Z (1998) Colony architecture of Millepora dichotoma. Forskal J Exp Mar Biol Ecol 224:225

    Article  Google Scholar 

  • Vago R, Plotquin D, Bunin A, Sinelnikov I, Atar D, Itzhak D (2002) Hard tissue remodeling using biofabricated coralline biomaterials. J Biochem Biophys Methods 50(2–3):253–259

    Article  PubMed  CAS  Google Scholar 

  • Vuola J, Bohling T, Kinnunen J, Hirvensalo E, Asko-Seljavaara S (2000) Natural coral as bone-defect-filling material. J Biomed Mater Res 51(1):117–122

    Article  PubMed  CAS  Google Scholar 

  • Weiner S, Addadi L (1997) Design strategies in mineralized biological materials. J Mater Chem 7(5):689–702

    Article  CAS  Google Scholar 

  • Yaszemski MJ, Payne RG, Hayes WC, Langer R, Mikos AG (1996) Evolution of bone transplantation: molecular, cellular and tissue strategies to engineer human bone. Biomaterials 17(2):175–185

    Article  PubMed  CAS  Google Scholar 

  • Zhang N, Yan HH, Wen XJ (2005) Tissue-engineering approaches for axonal guidance. Brain Res Rev 49(1):48–64

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Dr. L. Abramovitch-Gottlib, Ms. T. Gross-Aviv, Ms. L. Segal, Ms. H. Peretz, and Ms.L. Astachov for their support and Ms. I. Mureinik for critically reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Razi Vago.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vago, R. Cnidarians Biomineral in Tissue Engineering: A Review. Mar Biotechnol 10, 343–349 (2008). https://doi.org/10.1007/s10126-008-9103-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-008-9103-z

Keywords

Navigation