Skip to main content
Log in

A Novel Glycosylphosphatidylinositol-Anchored Alkaline Phosphatase Dwells in the Hepatic Duct of the Pearl Oyster, Pinctada fucata

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Alkaline phosphatases are ubiquitous enzymes involved in many important biological processes. Mammalian tissue-nonspecific alkaline phosphatase (TNAP) has long been thought to play an important role in bone mineralization. In this study, we identified a full-length cDNA encoding a potential alkaline phosphatse from pearl oyster Pinctada fucata by RT-PCR and RACE and designated the encoded protein as PFAP. The sequence of PFAP shares an overall similarity of 67% with that of human TNAP. Prediction and analysis of its secondary and tertiary structure revealed that the PFAP contains two mammalian-specific regions, the crown domain, involved in collagen binding, and the calcium binding domain, which hint its potential ability to participate in biomineralization. RT-PCR and in situ hybridization showed that the PFAP mRNA distributes specifically in the hepatic duct of the digestive diverticula. These findings implied its possible role in calcium absorption and transportation. In vivo, PFAP could be specifically released by phosphatidylinositol-specific phospholipase C (PIPLC), suggesting it is glycophosphatidylinositol-anchored to the plasma membrane. Therefore, a human growth hormone-PFAP fusion was constructed to locate the cleavage/attachment site. Immunofluorescent labeling and immunoblotting showed that Asn-477 is the cleavage/attachment site and the 25-residue peptide COOH-terminal to Asn-477 is removed during glycophosphatidylinositol anchoring. This research will hopefully pave the way to illustrate the role PFAP plays in calcium transportation related to pearl biomineralization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Abu-Hasan NS, Sutcliffe RG (1985) Placental alkaline phosphatase integrates via its carboxy-terminus into the microvillous membrane: its allotypes differ in conformation. Placenta 6, 391–404

    Article  PubMed  CAS  Google Scholar 

  • Addadi L, Weiner S (1997) A pavement of pearl. Nature 389, 912–915

    Article  CAS  Google Scholar 

  • Berger J, Howard AD, Gerber L, Cullen BR, Udenfriend S (1987) Expression of active, membrane-bound human placental alkaline phosphatase by transfected simian cells. Proc Natl Acad Sci USA 84, 4885–4889

    Article  PubMed  CAS  Google Scholar 

  • Blasco J, Puppo J, Sarasquete C (1993) Acid and alkaline phosphatase activities in the clam Ruditapes philippinarum. Mar Biol 115, 113–118

    Article  CAS  Google Scholar 

  • Bordier C (1981) Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem 256, 1604–1607

    PubMed  CAS  Google Scholar 

  • Caras IW, Davitz MA, Rhee L, Weddell G, Martin DW Jr, Nussenzweig V (1987) Cloning of decay-accelerating factor suggests novel use of splicing to generate two proteins. Nature 325, 545–549

    Article  PubMed  CAS  Google Scholar 

  • Chen R, Knez JJ, Merrick WC, Medof ME (2002) Comparative efficiencies of C-terminal signals of native glycophosphatidylinositol (GPI)-anchored proproteins in conferring GPI-anchoring. J Cell Biochem 84, 68–83

    Article  Google Scholar 

  • Chen HT, Xie LP, Yu ZY, Xu GR, Zhang RQ (2005) Chemical modification studies on alkaline phosphatase from pearl oyster (Pinctada fucata): a substrate reaction course analysis and involvement of essential arginine and lysine residues at the active site. Int J Biochem Cell Biol 37, 1446–1457

    Article  PubMed  CAS  Google Scholar 

  • de Backer M, McSweeney S, Rasmussen HB, Riise BW, Lindley P, Hough E (2002) The 19 Å crystal structure of heat-labile shrimp alkaline phosphatase. J Mol Biol 318, 1265–1274

    Article  PubMed  Google Scholar 

  • Genge BR, Sauer GR, Wu LN, Mclean FM, Wuthier RE (1988) Correlation between loss of alkaline phosphatase activity and accumulation of calcium during matrix vesicle-mediated mineralization. J Biol Chem 263, 18513–18519

    PubMed  CAS  Google Scholar 

  • Gerber LD, Kodukula K, Udenfriend S (1992) Phosphatidylinositol glycan (PI-G) anchored membrane proteins. J Biol Chem 267, 12168–12173

    PubMed  CAS  Google Scholar 

  • Goldstein DJ, Rogers CE, Harris H (1980) Expression of alkaline phosphatase loci in mammalian tissues. Proc Natl Acad Sci USA 77, 2857–2860

    Article  PubMed  CAS  Google Scholar 

  • Goldstein DJ, Rogers CE, Harris H (1982) Evolution of alkaline phosphatase in primates. Proc Natl Acad Sci USA 79, 879–883

    Article  PubMed  CAS  Google Scholar 

  • Guadiz G, Haidaris CG, Maine GN, Simpson-Haidaris PJ (1998) The carboxyl terminus of Pneumocystis carinii glycoprotein A encodes a functional glycosylphosphatidylinositol signal sequence. J Biol Chem 273, 26202–26209

    Article  PubMed  CAS  Google Scholar 

  • Henthorn PS, Raducha M, Fedde KN, Lafferty MA, Whyte MP (1992) Different missense mutations at the tissue non-specific alkaline phosphatase gene locus in autosomal recessively inherited forms of mild and severe hypophosphatasia. Proc Natl Acad Sci USA 89, 9924–9928

    Article  PubMed  CAS  Google Scholar 

  • Hessle L, Johnson KA, Anderson HC, Narisawa S, Sali A, Goding JW, Terkeltaub R, Millán JL (2002) Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proc Natl Acad Sci USA 99, 9445–9449

    Article  PubMed  CAS  Google Scholar 

  • Horton RM, Hunt HD, Ho SN, Pullen JK, Pease LR (1989) Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77, 61–68

    Article  PubMed  CAS  Google Scholar 

  • Huang WQ, Yao B, Sun L, Pu RL, Wang L, Zhang RQ (2001) Immunohistochemical and in situ hybridization study of gonadotropin releasing hormone (GnRH) and its receptor in rat digestive tract. Life Sci 68, 1727–1734

    Article  PubMed  CAS  Google Scholar 

  • Jemmerson R, Shah N, Takeya M, Fishman WH (1984) Functional organization of the placental alkaline phosphatase polypeptide chain. Prog Clin Biol Res 166, 105–115

    PubMed  CAS  Google Scholar 

  • Jolly C, Berland S, Milet C, Borzeix S, Lopez E, Doumenc D (2004) Zona localization of shell matrix proteins in mantle of Haliotis tuberculata (Mollusca, Gastropoda). Mar Biotechnol 6, 541–551

    Article  PubMed  CAS  Google Scholar 

  • Kim EE, Wyckoff HW (1991) Reaction mechanism of alkaline phosphatase based on crystal structures: two-metal ion catalysis. J Mol Biol 218, 449–464

    Article  PubMed  CAS  Google Scholar 

  • Kim IW, DiMasi E, Evans JS (2004) Identification of mineral modulation sequences within the nacre-associated oyster shell protein, n16. Cryst Growth Des 4, 1113–1118

    Article  CAS  Google Scholar 

  • Kodukula K, Micanovic R, Gerber L, Tamburrini M, Brink L, Udenfriend S (1991) Biosynthesis of phosphatidylinositol glycan-anchored membrane proteins. J Biol Chem 266, 4464–4470

    PubMed  CAS  Google Scholar 

  • Kozlenkov A, Manes T, Hoylaerts MF, Millán JL (2002) Function assignment to conserved residues in mammalian alkaline phosphatases. J Biol Chem 277, 22992–22999

    Article  PubMed  CAS  Google Scholar 

  • Le Du M-H, Millán JL (2002) Structural evidence of functional divergence in human alkaline phosphatases. J Biol Chem 277, 49808–49814

    Article  PubMed  CAS  Google Scholar 

  • Lodish HF (1988) Transport of secretory and membrane glycoproteins from the rough endoplasmic reticulum to the Golgi A rate-limiting step in protein maturation and secretion. J Biol Chem 263, 2107–2110

    PubMed  CAS  Google Scholar 

  • Low MG, Saltiel AR (1988) Structural and functional roles of glycosylphosphatidylinositol in membranes. Science 239, 268–275

    Article  PubMed  CAS  Google Scholar 

  • Makiya R, Stigbrand T (1992) Placental alkaline phosphatase has a binding site for the human immunoglobulin-G Fc portion. Eur J Biochem 205, 341–345

    Article  PubMed  CAS  Google Scholar 

  • Malamy MH, Horecker BL (1964) Release of alkaline phosphatase from cells of Escherichia coli upon lysozyme spheroplast formation. Biochemistry 3, 1889–1893

    Article  PubMed  CAS  Google Scholar 

  • Malik AS, Low MG (1986) Conversion of human placental alkaline phosphatase from a high Mr form to a low Mr form during butanol extraction. An investigation of the role of endogenous phosphoinositide-specific phospholipases. Biochem J 240, 519–527

    PubMed  CAS  Google Scholar 

  • Matsushiro A, Miyashita T, Miyamoto H, Morimoto K, Tonomura B, Tanaka A, Sato K (2003) Presence of protein complex is prerequisite for aragonite crystallization in the nacreous layer. Mar Biotechnol 5, 37–44

    Article  PubMed  CAS  Google Scholar 

  • Mazorra MT, Rubio JA, Blasco J (2002) Acid and alkaline phosphatase activities in the clam Scrobicularia plana: kinetic characteristics and effects of heavy metals. Comp Biochem Physiol 131B, 241–249

    CAS  Google Scholar 

  • McComb RB, Bowers GN Jr, Posen S (1979) Alkaline Phosphatase. (New York Plenum Press)

  • Micanovic R, Bailey CA, Brink L, Gerber L, Pan Y-CE, Hulmes JD, Udendriend S (1988) Aspartic acid-484 of nascent placental alkaline phosphatase condenses with a phosphatidylinositol glycan to become the carboxyl terminus of the mature enzyme. Proc Natl Acad Sci USA 85, 1398–1402

    Article  PubMed  CAS  Google Scholar 

  • Micanovic R, Gerber LD, Berger J, Kodukula K, Udenfriend S (1990) Selectivity of the cleavage/attachment site of phosphatidylinositol-glycan-anchored membrane proteins determined by site-specific mutagenesis at Asp-484 of placental alkaline phosphatase. Proc Natl Acad Sci USA 87, 157–161

    Article  PubMed  CAS  Google Scholar 

  • Millán JL, Manes T (1988) Seminoma-derived Nagao isozyme is encoded by a germ-cell alkaline phosphatase gene. Proc Natl Acad Sci USA 85, 3024–3028

    Article  PubMed  Google Scholar 

  • Miyashita T, Takagi R, Okushima M, Nakano S, Miyamoto H, Nishikawa E, Matsushiro A( 2000) Complementary DNA cloning and characterization of pearlin, a new class of matrix protein in the nacreous layer of oyster pearls. Mar Biotechnol 2, 409–418

    PubMed  CAS  Google Scholar 

  • Moran P, Raab H, Kohr WJ, Caras IW (1991) Glycophospholipid membrane anchor attachment. Molecular analysis of the cleavage/attachment site. J Biol Chem 266, 1250–1257

    PubMed  CAS  Google Scholar 

  • Mornet E (2000) Hypophosphatasia: the mutations in the tissue-nonspecific alkaline phosphatase gene. Hum Mutat 15, 309–315

    Article  PubMed  CAS  Google Scholar 

  • Mornet E, Stura E, Lia-Baldini A-S, Stigbrand T, Menez A, Le Du M-H (2001) Structural evidence for a functional role of human tissue nonspecific alkaline phosphatase in bone mineralization. J Biol Chem 276, 31171–31178

    Article  PubMed  CAS  Google Scholar 

  • Nilsen IW, Øverbø K, Olsen RL (2001) Thermolabile alkaline phosphatase from Northern shrimp (Pandalus borealis): protein and cDNA sequence analyses. Comp Biochem Physiol 129B, 853–861

    CAS  Google Scholar 

  • Samata T, Hayashi N, Kono M, Hasegawa K, Horita C, Akera S (1999) A new matrix protein family related to the nacreous layer formation of Pinctada fucata. FEBS Lett 462, 225–229

    Article  PubMed  CAS  Google Scholar 

  • Shen FH, Feng QL, Wang CM (2002) The modulation of collagen on crystal morphology of calcium carbonate. J Crystal Growth 242, 239–244

    Article  CAS  Google Scholar 

  • Sud D, Doumenc D, Lopez E, Millet C (2001) Role of water-soluble matrix fraction, extracted from the nacre of Pinctada maxima, in the regulation of cell activity in abalone mantle cell culture (Haliotis tuberculata). Tissue Cell 33, 154–160

    Article  PubMed  CAS  Google Scholar 

  • Sudo S, Fujikawa T, Nagakura T, Ohkubo T, Sakaguchi K, Tanaka M, Nakashima K, Takahashi T (1997) Structure of mollusk shell framework proteins. Nature 387, 563–564

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi T, Endo K (2006) Biphasic and xdually coordinated expression of the genes encoding major shell matrix proteins in the pearl oyster Pinctada fucata. Mar Biotechnol 8, 52–61

    Article  PubMed  CAS  Google Scholar 

  • Weiss MJ, Henthorn PS, Lafferty MA, Slaughter C, Raducha M, Harris, H (1986) Isolation and characterization of a cDNA encoding a human liver/bone/kidney-type alkaline phosphatase. Proc Natl Acad Sci USA 83, 7182–7186

    Article  PubMed  CAS  Google Scholar 

  • Weiss MJ, Cole DE, Ray K, Whyte MP, Lafferty MA, Mulivor RA, Harris H (1988) A missense mutation in the human liver/bone/kidney alkaline phosphatase gene causing a lethal form of hypophosphatasia. Proc Natl Acad Sci USA 85, 7666–7669

    Article  PubMed  CAS  Google Scholar 

  • Xiao R, Xie LP, Lin JY, Li CH, Chen QX, Zhou HM, Zhang RQ (2002) Purification and enzymatic characterization of alkaline phosphatase from Pinctada fucata. J Mol Catal B Enzym 17, 65–74

    CAS  Google Scholar 

  • Yu Plisova E, Balabanova LA, Ivanova EP, Kozhemyako VB, Mikhailov VV, Agafonova EV, Rasskazov VA (2005) A highly active alkaline phosphatase from the marine bacterium cobetia. Mar Biotechnol 7, 173–178 Epub 2005 May 26

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Li S, Ma ZJ, Xie LP, Zhang RQ (2006) A novel matrix protein p10 from the nacre of pearl oyster (Pinctada fucata) and its effects on both CaCO3 crystal formation and mineralogenic cells. Mar Biotechnol 8, 624–633 Epub 2006 Sep 18

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the National High Technology Research and Development Program of China (2006AA09Z441, 2006AA09Z413) and the National Science Foundation of China (30530600, 30221003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong-Qing Zhang.

Additional information

*These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie*, LP., Wu*, YT., Dai, YP. et al. A Novel Glycosylphosphatidylinositol-Anchored Alkaline Phosphatase Dwells in the Hepatic Duct of the Pearl Oyster, Pinctada fucata . Mar Biotechnol 9, 613–623 (2007). https://doi.org/10.1007/s10126-007-9015-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-007-9015-3

Keywords

Navigation