Skip to main content
Log in

Acid and alkaline phosphatase activities in the clam Ruditapes philippinarum

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Acid and alkaline phosphatase activities have been partially characterized in Ruditapes philippinarum (Adams and Reeve, 1850). Two activity peaks at pH=4.5 and pH 10.5 were detected in the gill, digestive gland, mantle, siphon and foot. Acid phosphatase activity was higher than that of alkaline phosphatase. The highest activity for both enzymes was observed in the digestive gland and, in decreasing order, the gill, foot, siphon and mantle. Alkaline phosphatase activity was similar in the mantle, siphon and foot. K m values were determined for both enzymes in the gill and digestive gland. Hill coefficients were near 1, indicating no allosteric behaviour for either enzyme in the two organs. The optimum temperature was the same for acid phosphatase in both gill and digestive gland (50 °C), while for alkaline phosphatase it differed for these two organs (gill, 40 °C; digestive gland, 35 °C). The apparent activation energy was obtained from Arrhenius plots, and ranged from 8.61 kcal/mol for alkaline phosphatase in the gill, to 10.84 kcal/mol for acid phosphatase in the digestive gland. The effects of metals (1 mM conc) on both enzyme activities were assayed in vitro. Hg strongly inhibited the enzyme activities in the gill and digestive gland, probably because of its affinity for the sulphydryl group. Histochemically, acid phosphatase in the gill was located in a granular form throughout the gill cells, but was undetectable in the ciliate epithelium of the gill filaments. Alkaline phosphatase was located in the gill skeleton. Clam size and phosphatase activities were inversely related, probably reflecting a decrease in shell deposition with inereasing size. As a function of season, both enzymes were present in lowest amounts in winter, when undifferentiated sex cells were predominant in the germinative epithelium, and highest in summer, when ripe individuals of both sexes were more frequent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Belloc, F., Gallis, J. L. (1980). Fresh water adaptation in the euryhaline teleost, Chelon labrosus. III. Biochemical characterization and increase in the acid phosphatase activity in gill. Comp. Biochem. Physiol 65A: 433–437

    Google Scholar 

  • Carpenè, E., Crisetig, G., Cortesi, P., Serrazanetti, G. (1979). Effetto del cadmio sull'attivitta' della fosfatasi alcalina (3.1.3.1) di Venus gallina. Boll. Soc. ital. Biol. sper. 55: 1210–1216

    Google Scholar 

  • Chambers, J. E., McCorckle, F. M., Carrol, J. W., Heitz, J. R., Lewis, L., Yarbrough, J. D. (1975). Variation in enzyme activities of the American oyster (Crassostrea virginica) relative to size and season. Comp. Biochem. Physiol. 51B: 145–150

    Google Scholar 

  • Chuang, N. N. (1990). A heat-stable alkaline phosphatase from Penaeus japonicus Bate (Crustacea: Decapoda): a phosphatidylinositol-glycan anchored membrane protein. Comp. Biochem. Physiol. 95B: 165–169

    Google Scholar 

  • Curti, C., Pizauro, J. M., Rossinholi, G., Vugman, I., Mello de Oliveira, J. A., Leone, F. A. (1986). Isolation and kinetic properties of an alkaline phosphatase from rat bone matrix-induced cartilage. Cell. molec. Biol 32: 55–62

    Google Scholar 

  • Cvancara, V., Conte, F. P. (1970). Gill alkaline phosphatase activity during salt water adaptation of sockeye salmon (Oncorhynchus nerka) Walbaum. Int. J. Biochem. 1: 597–604

    Google Scholar 

  • Dixon, M., Webb, E. C. (1979). Enzymes. Academic Press, New York

    Google Scholar 

  • Establier, R., Gutierrez, M., Blasco, J., Sarasquete, M. C., Bravo, E. (1984). Enzimas en organismos marinos. I. Fosfatasas del riñón de dorada, Sparus aurata, L. Investigación pesq. 48: 527–538

    Google Scholar 

  • Fosset, M., Chappelet-Tordo, D., Lazdunski, M. (1974). Intestinal alkaline phosphatase. Physical properties and quaternary structure. Biochemistry 13: 1783–1791

    Google Scholar 

  • González de Canales, M. L., Sarasquete, M. C. (1990). Enzimas hidrolíticas en el aparato digestivo de las almejas Ruditapes decussatus (Linnaeus, 1758) y Ruditapes philippinarum (Adams and Reeve, 1850), (Pelecipoda: Veneridae). Scientia mar. 54: 89–93

    Google Scholar 

  • González de Canales, M. L., Sarasquete, M. C., Blasco, J., Gutiérrez, M. (1986). Caracteres fisicoquimicos de la fosfatasa alcalina del granulocito neutrófilo de Halobatrachus didactylus (Schneider, 1801) (Telostei, Halobatrachidae). Investigación pescq. 50: 265–269

    Google Scholar 

  • Gutierrez, M., Establier, R., Blasco, J., Sarasquete, M. C. (1987). Phosphatases in the kidney of the aglomerular fish Halobatrachus didactylus (Schneider, 1801). Revue int. Océanogr. méd. 87–88: 161–169

    Google Scholar 

  • Harkness, D. R. (1968). Studies on human placental alkaline phosphatase: kinetic studies. Archs Biochem. Biophys. 126: 513–523

    Google Scholar 

  • Hiwada, K., Wachsmith, E. D. (1974) Catalytic properties of alkaline phosphatase from pig kidney. Biochem. J. 141: 283–291

    Google Scholar 

  • Kato, T., Hara, A., Nakayama, T., Sawada, H., Hamatake, M., Matsumoto, Y. (1986). Purification and characterization of purple acid phosphatase from rat bone. Comp. Biochem. Physiol. 83 B: 813–817

    Google Scholar 

  • Krajnovic-Ozretic, M., Ozretic, B. (1982). Enzyme activity in prawns exposed to the water soluble fraction of “Ural” crude oil. Journées Étud. Pollut. mar. Méditerr. Cannes (C.I.E.S.M.) 6: 663–668

    Google Scholar 

  • Lien, T., Knutsen, G. (1973). Synchronous cultures of Chlamydomonas reinhardtii properties and regulation of repressible phosphatases. Physiologia Pl. 28: 291–298

    Google Scholar 

  • Lojda, Z., Gossrau, R., Schiebler, T. (1979). Enzyme histochemistry. A laboratory manual. Springer-Verlag, New York

    Google Scholar 

  • Martoja, R., Martoja-Pierson, M. (1970). Técnicas de histología animal. Toray-Masson S. A., Barcelona

    Google Scholar 

  • Møller, M., Myklestad, S., Haug, A. (1975). Alkaline and acid phosphatases of the marine diatoms Chaetocerosa affinis var. Willei (Gram.) Hustedt and Skeletonema costatum (Ger.) Cleve. J. exp. mar. Biol. Ecol. 19: 217–226

    Google Scholar 

  • Pecreboom-Stegeman, J. H. J., Melet, J., Peereboom, J. W. C., Hooghwinkel, G. J. M. (1979). Influence of chronic Cd intoxication on the alkaline phosphatase activity of liver and kidney; biochemical, histochemical and histological investigations. Toxicology 14: 67–80

    Google Scholar 

  • Plocke, D. J., Vallee, B. L. (1962). Interaction of alkaline phosphatase of E. coli with metal ions and chelating agents. Biochemistry 1: 1039–1043

    Google Scholar 

  • Ram, R. N., Sathyanesan, A. G. (1985). Mercuric chloride, cythion and ammonium sulfate induced changes in the brain, liver and ovarian alkaline phosphatase content in the fish Channa puntactus. Envir. Ecol. 3: 263–268

    Google Scholar 

  • Reddy, M. S., Ramana Rao, K. V. (1990). Methylparathion-induced alterations in the acethylcholinesterase and phosphatases in a penaeid prawn, Metapenaeus monoceros. Bull. envir. Contam. Toxic. 45: 350–357

    Google Scholar 

  • Sarasquete, M. C., Gimeno, S., González de Canales, M. L. (1990). Cycle reproducteur de la palourde Ruditapes philippinarum (Adams & Reeve, 1850) de la côte Sud Ouest Atlantique (Espagne). Revue int. Océanogr. méd. 97: 90–99

    Google Scholar 

  • Sastry, K. V., Sharma, K. (1979). In vitro inhibition of three phosphatases by mercuric chloride and their reversal by chelating agent EDTA. Bull. envir. Contam. Toxic. 23: 741–746

    Google Scholar 

  • Schuel, H., Wilson, W. L., Wilson, J. R. (1975). Heterogenous distribution of “lysosomal” hydrolases of unfertilized eggs in yolk platelets isolated from zonal centrifugation. Devl. Biol 46: 404–412

    Google Scholar 

  • Walter, K., Schütt, C. (1974). Acid and alkaline phosphatase in serum (two point method). In: Bergmeyer, H. U. (ed.) Methods of enzymatic analysis. Vol 2. Verlag Chemie & Academic Press, Weinheim

    Google Scholar 

  • Westin, M. (1975). Phosphatase activity antigens in sea urchin eggs and embryos. J. exp. Zool. 192: 307–314

    Google Scholar 

  • Whitmore, D. H., Goldberg, E. (1972a). Trout intestinal alkaline phosphatases. I. Some physical-chemical characteristics. J. exp. Zool. 182: 47–58

    Google Scholar 

  • whitmore, D. H., Goldberg, E. (1972b). Trout intestinal alkaline phosphatases. II. The effect of temperature upon enzymatic activity in vitro and in vivo. J. exp. Zool. 182: 59–68

    Google Scholar 

  • Yokota, Y. (1986). Purification and characterization of particulate acid phosphatases from eggs of Mediterranean sea urchins. Comp. Biochem. Physiol 84B: 255–260

    Google Scholar 

  • Yora, T., Sakagishi, Y. (1986). Comparative biochemical study of alkaline phosphatase isozymes in fish, amphibians, reptiles, birds and mammals. Comp. Biochem. Physiol. 85 B: 649–658

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. M. Pérès, Marseille

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blasco, J., Puppo, J. & Sarasquete, M.C. Acid and alkaline phosphatase activities in the clam Ruditapes philippinarum . Marine Biology 115, 113–118 (1993). https://doi.org/10.1007/BF00349392

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00349392

Keywords

Navigation