Skip to main content
Log in

vB_EcoM-P896 coliphage isolated from duck sewage can lyse both intestinal pathogenic Escherichia coli and extraintestinal pathogenic E. coli

  • Research
  • Published:
International Microbiology Aims and scope Submit manuscript

Abstract

Pathogenic Escherichia coli strains cause diseases in both humans and animals. The limiting factors to prevent as well as control infections from pathogenic E. coli strains are their pathotypes, serotypes, and drug resistance. Herein, a bacteriophage (vB_EcoM-P896) has been isolated from duck sewage. Furthermore, aside from targeting intestinal pathogenic E. coli strains like enteropathogenic E. coli, Shiga toxin-producing E. coli, entero-invasive E. coli, and enteroaggregative E. coli, vB_EcoM-P896 can cause lysis in extraintestinal pathogenic E. coli strains such as avian pathogenic E. coli. Stability analysis revealed that vB_EcoM-P896 was stable under the following conditions: temperature, 4℃–50℃; pH, 3–11. The sequencing of the vB_EcoM-P896 genome was conducted utilizing an HiSeq system (Illumina, San Diego, CA) and subjected to de novo assembling with the aid of Spades 3.11.1. The characteristics of the DNA genome were as follows: size, 170,656 bp; GC content, 40.4%; the number of putative coding regions, 294. Transmission electron microscopy analysis of morphology and genome analysis revealed that the phage vB_EcoM-P896 belonged to the order Caudovirales and the family Myoviridae. The pan-genome analysis of vB_EcoM-P896 was divided into two levels. The first level involved the analysis of 91 strains of muscle tail phages, which were mainly divided into 5 groups. The second level involved the analysis of 24 strains of myophage with high homology. Of the 1480 gene clusters, 23 were shared core genes. Neighbor-joining phylogenetic trees were constructed using the Poisson model with MEGA6.0 based on the conserved sequences of phage proteins, the amino acid sequence of the terminase large subunit, and tail fibrin. Further analysis revealed that vB_EcoM-P896 was a typical T4-like potent phage with potential clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

Abbreviations

APEC :

Avian pathogenic Escherichia coli

CDS :

Coding regions

CFU :

Colony forming units

DAEC :

Diffusely adherent Escherichia coli

EAEC :

Enteroaggregative Escherichia coli

E. coli :

Escherichia coli

EC :

Escherichia coli

EHEC :

Enterohaemorrhagic Escherichia coli

EIEC :

Enteroinvasive Escherichia coli

EPEC :

Enteropathogenic Escherichia coli

ETEC :

Enterotoxic Escherichia coli

ExPEC :

Extraintestinal Pathogenic Escherichia coli

HGT :

Horizontal geng transfer

HUS :

Hemolytic-uremic syndrome

IPEC :

Intestinal Pathogenic Escherichia coli

LB :

Luria-Bertani

MOI :

Multiplicity of infection

NA :

Not available

NCBI :

National Center for Biotechnology Information Search database

NJ :

Neighbor-joining

NMEC :

Neonatal meningitis Escherichia coli

OD :

Optical density 600

PAS :

Phage-antibiotic synergy

PBS :

Phosphate Buffered Saline

PFU :

Plaque forming unit

PHACTS :

Phage classification tool set

RAST :

Rapid Annotation using Subsystem Technology server

RBPs :

Receptor binding proteins

rpm :

Revolutions per minute

STEC :

Shiga toxin-producing Escherichia coli

TerL :

The large terminal subunit

UPEC :

Uropathogenic Escherichia coli

References

  • Ackermann HW (2007) 5500 phages examined in the electron microscope. Arch Virol 152:227–243

    Article  CAS  PubMed  Google Scholar 

  • Ackermann H (2009) phage classification and characterization. Methods Mol Biol 501:127–140

    Article  CAS  PubMed  Google Scholar 

  • Adler BA, Kazakov AE, Zhong C et al (2022) The genetic basis of phage susceptibility, cross-resistance and host-range in Salmonella. Microbiology 167(12):001126

  • Anand T, Vaid RK, Bera BC, Barua S, Riyesh T, Virmani N et al (2015) Isolation and characterization of a bacteriophage with broad host range, displaying potential in preventing bovine diarrhoea. Virus Genes 51:315–321

    Article  CAS  PubMed  Google Scholar 

  • Atnafie B, Paulos D, Abera M, Tefera G, Hailu D, Kasaye S et al (2017) Occurrence of Escherichia Coli O157:H7 in cattle feces and contamination of carcass and various contact surfaces in abattoir and butcher shops of hawassa. Ethiopia Bmc Microbiol 17:24

    Article  PubMed  Google Scholar 

  • Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA et al (2008) The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75

    Article  PubMed  PubMed Central  Google Scholar 

  • Bachrach G, Leizerovici-Zigmond M, Zlotkin A, Naor R, Steinberg D (2003) bacteriophage isolation from human saliva. Lett Appl Microbiol 2003:50–53

    Article  Google Scholar 

  • Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan BK, Abedon ST, Loc-Carrillo C (2013) Phage cocktails and the future of phage therapy. Future Microbiol 8:769–783

    Article  CAS  PubMed  Google Scholar 

  • Chang Y, Shin H, Lee J, Park C, Paik S, Ryu S (2015) Isolation and genome characterization of the virulent staphylococcus aureus bacteriophage SA97. Viruses 7:5225–5242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Zhang W, Yin J, Zhang N, Geng S, Zhou X et al (2014) Escherichia Coli Isolates from sick chickens in china: changes in antimicrobial resistance between 1993 and 2013. Vet J 202:112–115

    Article  PubMed  Google Scholar 

  • Cieplak T, Soffer N, Sulakvelidze A et al (2018) A bacteriophage cocktail targeting Escherichia coli reduces E. coli in simulated gut conditions, while preserving a non-targeted representative commensal normal microbiota. Gut Microbes 9(5):391–399

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cieplak T, Soffer N, Sulakvelidze A, Nielsen DS (2018) A bacteriophage cocktail targeting Escherichia coli reduces E. coli in simulated gut conditions, while preserving a non-targeted representative commensal normal microbiota. Gut Microbes 9(5):391–399

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coulter L, McLean R, Rohde R, Aron G (2014) Effect of bacteriophage infection in combination with tobramycin on the emergence of resistance in Escherichia Coli and pseudomonas aeruginosa biofilms. Viruses 6:3778–3786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M, Finlay BB (2013) Recent advances in understanding enteric pathogenic Escherichia Coli. Clin Microbiol Rev 26:822–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui HY, Yuan L, Lin L (2017) Novel chitosan film embedded with liposome-encapsulated phage forbiocontrol of Escherichia coli O157:H7 in beef. Carbohyd Polym 177:156–164

    Article  CAS  Google Scholar 

  • Dissanayake U, Ukhanova M, Moye ZD, Sulakvelidze A, Mai V (2019) Bacteriophages reduce pathogenic Escherichia coli counts in mice without distorting gut microbiota. Front Microbiol 10:1984

    Article  PubMed  PubMed Central  Google Scholar 

  • Fratamico PM, DebRoy C, Liu Y, Needleman DS, Baranzoni GM, Feng P (2016) Advances in Molecular Serotyping and Subtyping of Escherichia Coli. Front Microbiol 7

  • Gill JJ, Hyman P (2010) Phage choice, isolation, and preparation for phage therapy. Curr Pharm Biotechno 11:2

    Article  CAS  Google Scholar 

  • Harper DR, Abedon ST, Burrowes BH, McConville ML (2019) Bacteriophages. Springer, Cham

    Google Scholar 

  • Horiuk Y, Horiuk V, Kukhtyn M, Tsvihun A, Kernychnyi S (2020) Characterization of lytic activity of phage SAvB14 on Staphylococcus aureus variant bovis. J Adv Vet Animal Res 7(3):509–513

    Article  Google Scholar 

  • Huff WE, Huff GR, Rath NC, Balog JM, Donoghue AM (2002) Prevention of Escherichia coli Infection in Broiler Chickens with a Bacteriophage Aerosol Spray. Poult Sci 2002:1486–1491

    Article  Google Scholar 

  • Hyman P, Abedon ST (2010) Bacteriophage host range and bacterial resistance. Adv Appl Microbiol 2010:217–248

    Article  Google Scholar 

  • Jensen EC, Schrader HS, Rieland B, Thompson TL, Lee KW, Nickerson KW et al (1998) Prevalence of broad-host-range lytic bacteriophages of Sphaerotilus Natans, Escherichia Coli, and Pseudomonas Aeruginosa. Appl Environ Microbiol 64:575–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson JR, Russo TA (2002) Uropathogenic Escherichia coli as agents of diverse non-urinary tract extraintestinal infections. J Infect Dis 186:859–864

    Article  CAS  PubMed  Google Scholar 

  • Kaper BJ, Nataro PJ, Mobley LH (2004) Pathogenic Escherichia Coli. Nat Rev Microbiol 2:123–140

    Article  CAS  PubMed  Google Scholar 

  • Khan Mirzaei M, Nilsson AS (2015) Isolation of phages for phage therapy: a comparison of spot tests and efficiency of plating analyses for determination of host range and efficacy. PLoS ONE 10:e118557

    Article  Google Scholar 

  • Kim KS (2012) Current concepts on the pathogenesis of Escherichia Coli Meningitis: implications for therapy and prevention. Curr Opin Infect Dis 25:273–278

    Article  CAS  PubMed  Google Scholar 

  • Knezevic P, Kostanjsek R, Obreht D, Petrovic O (2009) Isolation of pseudomonas aeruginosa specific phages with broad activity spectra. Curr Microbiol 59:173–180

    Article  CAS  PubMed  Google Scholar 

  • Lavigne R, Darius P, Summer EJ, Seto D, Mahadevan P, Nilsson AS et al (2009) Classification of myoviridae bacteriophages using protein sequence similarity. Bmc Microbiol 9:224

    Article  PubMed  PubMed Central  Google Scholar 

  • Legrand P, Collins B, Blangy S, Murphy J, Spinelli S, Gutierrez C et al (2016) The atomic structure of the phage tuc 2009 baseplate tripod suggests that host recognition involves two different carbohydrate binding modules. Mbio 7:e1715–e1781

    Article  Google Scholar 

  • Liu M, Bischoff KM, Gill JJ, Mire-Criscione MD, Berry JD, Young R, Summer EJ (2015) Bacteriophage application restores ethanol fermentation characteristicsdisrupted by Lactobacillus fermentum. Biotechnol Biofuels 8:132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machuca P, Daille L, Vinés E, Berrocal L, Bittner M (2010) Isolation of a Novel Bacteriophage Specific for the Periodontal PathogenFusobacterium nucleatum. Appl Environ Microb 76:7243–50

    Article  CAS  Google Scholar 

  • Mavrich TN, Hatfull GF (2017) Bacteriophage evolution differs by host, Lifestyle and Genome. Nat Microbiol 2:17112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McNair K, Bailey BA, Edwards RA (2012) PHACTS, a computational approach to classifying the lifestyle of phages. Bioinformatics 28:614–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee M (2013) molecular characterization of uropathogenic Escherichia coli: nalidixic acid and ciprofloxacin resistance, virulent factors and phylogenetic background. J Clin Diagn Res 7:2727–2731

    PubMed  PubMed Central  Google Scholar 

  • Nobrega FL, Costa AR, Kluskens LD, Azeredo J (2015) Revisiting phage therapy: new applications for old resources. Trends Microbiol 23:185–191

    Article  CAS  PubMed  Google Scholar 

  • North OI, Davidson AR, O’Toole G (2021) Phage Proteins required for tail fiber assembly also bind specifically to the surface of host bacterial strains. J Bacteriol 203:e406–e420

    Article  Google Scholar 

  • Orskov I, Orskov F, Jann B, Jann K (1977) Serology, chemistry, and genetics of o and k antigens of Escherichia coli. Bacteriol Rev 41:667–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG et al (2015) Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31:3691–3693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parasion S, Kwiatek M, Mizak L, Gryko R, Bartoszcze M, Kocik J (2012) Isolation and characterization of a novel bacteriophage φ4D lytic against enterococcus faecalis strains. Curr Microbiol 65:284–289

    Article  CAS  PubMed  Google Scholar 

  • Park DW, Park JH (2021) Characterization of a novel phage depolymerase specific to Escherichia coli O157:H7 and biofilm control on abiotic surfaces. J Microbiol 17(26):30–64

    Google Scholar 

  • Pires DP, Cleto S, Sillankorva S, Azeredo J, Lu TK (2016) Genetically engineered phages: a review of advances over the last decade. Microbiol Mol Biol R 80:523–543

    Article  CAS  Google Scholar 

  • Quagliarello V, Scheld WM (1992) Bacterial meningitis: pathogenesis, pathophysiology, and progress. N Engl J Med 327:864–872

    Article  CAS  PubMed  Google Scholar 

  • Ross A, Ward S, Hyman P (2016) More is Better: Selecting for Broad Host Range Bacteriophages. Front Microbiol 7.

  • Ryan EM, Alkawareek MY, Donnelly RF, Gilmore BF (2012) Synergistic phage-antibiotic combinations for the control of Escherichia coli biofilms in vitro. FEMS Immunol Med Microbiol 65(2)395–398

  • Sabouri GM, Mohammadi A (2012) Bacteriophage: time to re-evaluate the potential of phage therapy as a promising agent to control multidrug-resistant bacteria. Iran J Basic Med Sci 15:693–701

    Google Scholar 

  • Safwat MD, Farouk AE, Mohamed MA et al (2018) Isolation and evaluation of cocktail phages for the control of multidrug-resistant Escherichia coli serotype O104:H4 and E. coli O157:H7 isolates causing diarrhea. FEMS Microbiol Lett 365(2):33–45

    Google Scholar 

  • Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069

    Article  CAS  PubMed  Google Scholar 

  • Smith HW, Huggins MB (1982) Successful treatment of experimental Escherichia Coli infections in mice using phage: its general superiority over antibiotics. J Gen Microbiol 2:307–318

    Google Scholar 

  • Smith HW, Huggins MB (1983) Effectiveness of phages in treating experimental Escherichia Coli diarrhoea in calves, piglets and lambs. J Gen Microbiol 8:2659–2675

    Google Scholar 

  • Smith HW, Huggins MB, Shaw KM (1987) The control of experimental Escherichia Coli diarrhoea in calves by means of bacteriophages. J Gen Microbiol 5:1111–1126

    Google Scholar 

  • Sulakvelidze A, Alavidze Z, Morris JG Jr (2001) Bacteriophage Therapy. Antimicrob Agents Chemother 2001:649–59

    Article  Google Scholar 

  • Tagliaferri TL, Jansen M, Horz H (2019) Fighting Pathogenic Bacteria on Two Fronts: Phages and Antibiotics as Combined Strategy. Front Cell Infect Mi 9

  • Torres-Barceló C (2018) The disparate effects of bacteriophages on antibiotic-resistant bacteria. Emerg Microbes Infec 7:1–12

    Article  Google Scholar 

  • Tremblay DM, Tegoni M, Spinelli S, Campanacci VR, Blangy SP, Huyghe CL et al (2006) Receptor-binding protein of lactococcus lactis phages: identification and characterization of the saccharide receptor-binding site. J Bacteriol 7:2400–2410

    Article  Google Scholar 

  • Whitfield C (2006) Biosynthesis and assembly of capsular polysaccharides in Escherichia Coli. Annu Rev Biochem 75:39–68

    Article  CAS  PubMed  Google Scholar 

  • Yehl K, Lemire S, Yang AC, Ando H, Mimee M, Torres MDT et al (2019) Engineering phage host-range and suppressing bacterial resistance through phage tail fiber mutagenesis. Cell 179:459–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi Y, Abdelhamid AG, Xu YM, Yousef AE (2021) Characterization of broad-host lytic Salmonella phages isolated from livestock farms and application against Salmonella enteritidis in liquid whole egg. LWT 144:111269

    Article  CAS  Google Scholar 

  • Zhang C, Li W, Liu W, Zou L, Yan C, Lu K et al (2013) T4-like phage Bp7, a potential antimicrobial agent for controlling drug-resistant Escherichia coli in chickens. Appl Environ Microb 79:5559–5565

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the following funds: Natural Science Foundation of Anhui Province (2022AH052192). NHC Key laboratory of Enteric Pathogenic Microbiology (Jiangsu Provincial Center for Disease Control and Prevention, EM202303). "National Visiting Scholar Program for Young Backbone Teachers of Higher Education Institutions in Central and Western China" by the Ministry of Education. The Natural Science Research Project of Anhui Province (KJ2021ZD0153). The Project of Cultivating Outstanding Talents in Colleges (gxgnfx2022135). Wuhu Institute of Technology level science and technology team (wzykjtd202002).Academic and technical leader of the "Talent Project" at Wuhu Institute of Technology (rc2022dtr03). Guizhou Province Science and Technology Plan Project (Grant No. QKH [2023]008).

Author information

Authors and Affiliations

Authors

Contributions

Zhang H.Y. and Zhang S. wrote the main manuscript text. Su X.Z. and Zheng X.K. performed the data analyses. Liu M.H., Zhao C.X., Liu X. and Ma Z.X. prepared the visualization and data presentation. Zhang W. contributed to the conception of the study. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Shuang Zhang or Wei Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Su, X., Zheng, X. et al. vB_EcoM-P896 coliphage isolated from duck sewage can lyse both intestinal pathogenic Escherichia coli and extraintestinal pathogenic E. coli. Int Microbiol (2024). https://doi.org/10.1007/s10123-024-00519-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10123-024-00519-5

Keywords

Navigation