Skip to main content
Log in

Isolation of Pseudomonas aeruginosa Specific Phages with Broad Activity Spectra

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The aim of the study was to screen various kinds of samples for Pseudomonas aeruginosa specific phages and to isolate and partially characterize those with broad activity spectra. The Pseudomonas specific phages were isolated using an enrichment procedure with single strains or the cocktail of P. aeruginosa strains as hosts. Using the described procedure, phages were successfully isolated only from water samples, while in soil and feces no Pseudomonas specific phages were detected. The lytic spectra of isolated phages were determined by spot method on lawns of 33 P. aeruginosa strains and five species belonging to family Enterobacteriaceae. The results showed that among isolated phages, 001A, δ, and I possessed the broad activity spectra, as were able to plaque on more than 50% of tested P. aeruginosa strains, while none of the phages were able to lyse the other tested species. Significant differences in phage activity spectra were not observed when P. aeruginosa cocktail was applied for sample enrichment. The most of the phages examined by electron microscopy belonged to family Siphoviridae, while the broad activity spectra isolates, except for 001A, possessed morphological characteristics of family Podoviridae. Digested DNA of the phages δ and I showed similar patterns, indicating the prevalence and success of this phage type in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ackermann HW (2001) Frequency of morphological phage description in the year 2000. Arch Virol 146:843–857

    Article  PubMed  CAS  Google Scholar 

  2. Ackerman HW (2003) Bacteriophage observations and evolution. Res Microbiol 154:251–548

    Article  CAS  Google Scholar 

  3. Ashelford KE, Day MJ, Fry JC (2003) Elevated Abundance of bacteriophage Infecting Bacteria in Soil. Appl Env Microbiol 69:285–289

    Article  CAS  Google Scholar 

  4. Bozzola JJ, Russell LD (1998) Electron microscopy—principles and techniques for biology, 2nd edn. Jones and Bartlett Publishers, Sundbury, Massachusetts, p 670

    Google Scholar 

  5. Bradley DE (1976) Ultrastructure of bacteriophage and bacteriocins. Bacteriol Rev 31:230–314

    Google Scholar 

  6. Brockhurst MA, Fenton A, Roulston B et al (2006) The impact of phages on interspecific competition in experimental populations of bacteria. BMC Ecology. http://www.biomedcentral.com/1472-6785/6/19. Accessed 9 Feb 2008

  7. Brusow H, Kutter E (2005) Phage ecology. In: Kutter E, Sulakvelidze A (eds) Bacteriophages: biology and applications. CRC Press, Boca Raton, FL, pp 129–163

    Google Scholar 

  8. Carey-Smith GV, Billington C, Cornelius AJ et al (2006) Isolation and characterization of bacteriophages infecting Salmonella spp. FEMS Microbiol Lett 258:182–186

    Article  PubMed  CAS  Google Scholar 

  9. Carlson K (2005) Working with bacteriophages: common techniques and methodological approaches. In: Kutter E, Sulakvelidze A (eds) Bacteriophages: biology and applications. CRC Press, Boca Raton, FL, pp 129–163

    Google Scholar 

  10. Carlton RM (1999) Phage therapy: past history and future prospects. Arch Immunol Ther Exp 47:267–274

    CAS  Google Scholar 

  11. Ceyssens P, Lavigne R, Matteus W et al (2006) Genomic Analysis of Pseudomonas aeruginosa phages LDK16 and LKA1: establishment of the ФKMV subgroup within the T7 supergroup. J Bacteriol 188(19):6924–6931

    Article  PubMed  CAS  Google Scholar 

  12. Furuse K (1987) Distribution of coliphages in the environment: general considerations. In: Goyal SM, Gerba GP, Bitton G (eds) Phage ecology. Wiley & Sons, New York, pp 87–124

    Google Scholar 

  13. Ghanaat J, Ghazvini K, Aryan AA et al (2003) Treatment with bacteriophages of experimentally-infected mice caused by antibiotic-resistant Pseudomonas aeruginosa. Int J Mol Sci 28:207–208

    Google Scholar 

  14. Green SK, Schroth MN, Cho JJ et al (1974) Agricultural plants and soil as a reservoir for Pseudomonas aeruginosa. Appl Microbiol 28:987–991

    PubMed  CAS  Google Scholar 

  15. Hanlon GW, Denyer SP, Olliff CJ et al (2001) Reduction in exopolysaccharide viscosity as an aid to bacteriophage penetration through Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 67:2746–2753

    Article  PubMed  CAS  Google Scholar 

  16. Hennes KP, Simon M (1995) Significance of bacteriophages for controlling bacterioplankton growth in a mesotrophic lake. Appl Environ Microbiol 61:333–340

    PubMed  CAS  Google Scholar 

  17. Jensen EC, Schrader HS, Rieland B et al (1998) Prevalence of broad-host-range lytic bacteriophages of Sphaerotilus natans, Escherichia coli, and Pseudomonas aeruginosa. Appl Environ Microbiol 64:575–580

    PubMed  CAS  Google Scholar 

  18. Knezevic P, Petrovic O (2008) A simple microtiter-plate method for evaluation of phage effect on Pseudomonas aeruginosa biofilm. J Microbiol Methods 72(2–3):114–118

    Article  CAS  Google Scholar 

  19. Marphy FA, Fauquet CM, Bishop DHL et al (1995) Virus taxonomy. In: Virus taxonomy: sixth report of the international committee on taxonomy of viruses, Wien, Springer, pp 1–60

  20. McVay CS, Velásquez M, Fralick JA (2007) Phage therapy of Pseudomonas aeruginosa infection in a mouse burn wound model. Antimicrob Agents Chemother 51:1934–1938

    Article  PubMed  CAS  Google Scholar 

  21. Ringen LM, Drake CH (1952) A study of the incidence of Pseudomonas aeruginosa from various natural sources. J Bacteriol 64:841–845

    Article  PubMed  CAS  Google Scholar 

  22. Rohwer F, Edwards R (2002) The phage proteomic tree: a genome-based taxonomy for phage. J Bacteriol 184:4529–4535

    Article  PubMed  CAS  Google Scholar 

  23. Salama S, Bolton FJ, Hutchinson DN (1989) Improved method for the isolation of Campylobacter jejuni and Campylobacter coli bacteriophages. Lett Appl Microbiol 8:5–7

    Article  Google Scholar 

  24. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  25. Soothill HW (1992) Treatment of experimental infection of mice with bacteriophages. J Med Microbiol 37:258–261

    Article  PubMed  CAS  Google Scholar 

  26. Soothill HW, Lawrence JC, Ayliffe GAJ (1988) The efficacy of phages in the prevention of the destruction of pig skin in vitro by Pseudomonas aeruginosa. Med Sci Res 16:1287–1288

    Google Scholar 

  27. Soothill HW (1994) Bacteriophage prevents destruction of skin grafts by Pseudomonas aeruginosa. Burns 20:209–211

    Article  PubMed  CAS  Google Scholar 

  28. Srinivasiah S, Bhavsar J, Thapar K et al (2008) Phages across the biosphere: contrasts of viruses in soil and aquatic environments. Res Microbiol 159(5):349–357

    Article  PubMed  CAS  Google Scholar 

  29. StatSoft Inc. (2006) Statistica (data analysis software system) version 7.1. Tulsa, OK

  30. Watanabe R, Matsumoto T, Sano G et al (2007) Efficacy of bacteriophages therapy against gut-derived sepsis caused by Pseudomonas aeruginosa in mice. Antimicrob Agents Chemother 51:446–452

    Article  PubMed  CAS  Google Scholar 

  31. Weinbauer MG, Hofle MG (1998) Size-specific mortality of lake bacterioplankton by natural virus communities. Aquat Microb Ecol 15:103–113

    Article  Google Scholar 

  32. Williamson KE, Radosevich M, Wommack KE (2005) Abundance and diversity of viruses in six delaware soils. Appl Environ Microbiol 71:3119–3125

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Mr Emilija Nikolic-Djoric (Faculty of Agriculture, University of Novi Sad) for help in statistical analysis; Dr Mirjana Vojvodic (Laboratory Biotest, Novi Sad), Prof. Dr Mira Mihajlović-Ukropina (Institute of Public Health Novi Sad) and Prof. Dr Dragan Radnovic (Faculty of Natural Sciences, Novi Sad) for help in providing Pseudomonas aeruginosa strains and Sanja Curcin and Milivoje Petrusic for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petar Knezevic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knezevic, P., Kostanjsek, R., Obreht, D. et al. Isolation of Pseudomonas aeruginosa Specific Phages with Broad Activity Spectra. Curr Microbiol 59, 173–180 (2009). https://doi.org/10.1007/s00284-009-9417-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-009-9417-8

Keywords

Navigation