Skip to main content
Log in

Screening and characterization of marine actinomycetes from the northern Oman Sea sediments for cytotoxic and antimicrobial activity

  • Original Article
  • Published:
International Microbiology Aims and scope Submit manuscript

Abstract

A total of 168 actinomycete colonies were isolated from 14 sediment samples of the northern parts of the Oman Sea and were screened for cytotoxic and antimicrobial activity. Among four media and two treatments, the glucose arginine agar medium (18%) and heat treatment (28.3%) showed maximum isolation rate of actinomycetes. Preliminary characterization revealed that the members of Streptomycetaceae were widely distributed (66%) in the most of the sampling stations followed by Micromonosporaceae (14%), Nocardiaceae (6%), and Pseudonocardiaceae (4%), respectively. Approximately, 23.8% of the isolates inhibited the growth of at least one of the microbial test strains, while the majority of them belonged to the Streptomycetaceae family. Minimum inhibitory concentrations of the ethyl acetate culture extracts of the five most putative isolates varied from 64 μg/mL against Micrococcus luteus and Candida albicans to 1 mg/mL against Aspergillus niger. These extracts showed significant cytotoxic activity at18.74–193.5 μg/mL on the human breast (MCF7), colon (HCT 116), and liver (HepG2) tumor cell lines while exhibited less or no cytotoxicity on the normal cell line (HUVEC). Interestingly, IFSRI 193 extract selectively inhibited the growth of HCT 116 cell line and gram-positive bacteria. 16S rRNA gene sequencing revealed that the potent isolates have 97 to 99% similarity with S. chartreusis, S. cacaoi, S. sampsonii, S. qinglanensis, and S. diastaticus. These results suggested that the five Streptomyces strains could be considered candidates for discovering the antitumor antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arakawa K (2018) Manipulation of metabolic pathways controlled by signaling molecules, inducers of antibiotic production, for genome mining in Streptomyces spp. Antonie Van Leeuwenhoek 111:743–751

    Article  CAS  PubMed  Google Scholar 

  • Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 6:71–79

    Article  PubMed  Google Scholar 

  • Blunt JW, Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR (2018) Marine natural products. Nat Prod Rep 35:8–53

    Article  CAS  PubMed  Google Scholar 

  • Chróst RJ (2012) Microbial enzymes in aquatic environments. Springer Science & Business Media

  • CLSI (2015) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard—Tenth Edition. CLSI document M07-A10. Wayne, PA. Clinical and Laboratory Standards Institute

  • Dhaneesha M, Benjamin Naman C, Krishnan KP, Sinha RK, Jayesh P, Joseph V, Bright Singh IS, Gerwick WH, Sajeevan TP (2017) Streptomyces artemisiae MCCB 248 isolated from Arctic fjord sediments has unique PKS and NRPS biosynthetic genes and produces potential new anticancer natural products. 3 Biotech 7:32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duncan K, Haltli B, Gill K, Correa H, Berrué F, Kerr R (2015) Exploring the diversity and metabolic potential of actinomycetes from temperate marine sediments from Newfoundland, Canada. J Ind Microbiol Biotechnol 42:57–72

    Article  CAS  PubMed  Google Scholar 

  • Edrada-Ebel R et al. (2018) SeaBioTech: from seabed to test-bed: harvesting the potential of marine biodiversity for industrial biotechnology. In: Grand challenges in marine biotechnology. Springer, pp 451–504

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 39:783–791

    Article  PubMed  Google Scholar 

  • Genilloud O (2017) Actinomycetes: still a source of novel antibiotics. Nat Prod Rep 34(10):1203–1232

    Article  CAS  PubMed  Google Scholar 

  • Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Suzuki K-i, Ludwig W, Whitman WB (2012) Bergey’s manual® of systematic bacteriology: volume five the Actinobacteria, part a. Springer New York

  • Gozari M, Mortazavi M, Bahador N, Rabbaniha M (2016) Isolation and screening of antibacterial and enzyme producing marine actinobacteria to approach probiotics against some pathogenic vibrios in shrimp Litopenaeus vannamei. Iran J Fish Sci 15:630–644

    Google Scholar 

  • Gozari M, Bahador N, Jassbi A, Mortazavi M, Eftekhar E (2018) Antioxidant and cytotoxic activities of metabolites produced by a new marine Streptomyces sp. isolated from the sea cucumber Holothuria leucospilota. Iran J Fish Sci 17:413–426

    Google Scholar 

  • Hamedi J, Poorinmohammad N, Wink J (2017) The role of actinobacteria in biotechnology. In: Biology and biotechnology of actinobacteria. Springer, pp 269–328

  • Heuer H, Krsek M, Baker P, Smalla K, Wellington E (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol 63:3233–3241

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu H, Lin H-P, Xie Q, Li L, Xie X-Q, Hong K (2012) Streptomyces qinglanensis sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 62:596–600

    Article  CAS  PubMed  Google Scholar 

  • Jensen PR, Gontang E, Mafnas C, Mincer TJ, Fenical W (2005) Culturable marine actinomycete diversity from tropical Pacific Ocean sediments. Environ Microbiol 7:1039–1048

    Article  PubMed  Google Scholar 

  • Jensen PR, Moore BS, Fenical W (2015) The marine actinomycete genus Salinispora: a model organism for secondary metabolite discovery. Nat Prod Rep 32:738–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalinovskaya N, Romanenko LA, Kalinovsky AI, Ermakova SP, Dmitrenok PS, Afiyatulov S (2017) The antitumor antibiotics complex of aureolic acids from the marine sediment-associated strain of Streptomyces sp. KNIM 9048. Nat Prod Commun 12:571–577

    PubMed  Google Scholar 

  • Karamouz M, Nazif S, Falahi M (2012) Hydrology and hydroclimatology: principles and applications. CRC Press

  • Kieser T (2000) Practical streptomyces genetics. John Innes Foundation, Norwich, England

  • Kim S-K (2015) Handbook of anticancer drugs from marine origin vol 22–98. Springer

  • Kruter L, Saggar V, Akhavan A, Patel P, Umanoff N, Viola KV, Stebbins W, Smith E, Akhavan A, Cohen JV, Cohen SR (2015) Intralesional bleomycin for warts: patient satisfaction and treatment outcomes. J Cutan Med Surg 19:470–476

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maldonado LA, Stach JE, Pathom-aree W, Ward AC, Bull AT, Goodfellow M (2005) Diversity of cultivable actinobacteria in geographically widespread marine sediments. Antonie Van Leeuwenhoek 87:11–18

    Article  PubMed  Google Scholar 

  • Mincer TJ, Jensen PR, Kauffman CA, Fenical W (2002) Widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments. Appl Environ Microbiol 68:5005–5011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng ZY, Tan GYA (2018) Selective isolation and characterisation of novel members of the family Nocardiopsaceae and other actinobacteria from a marine sediment of Tioman Island. Antonie Van Leeuwenhoek 111:727–742

    Article  CAS  PubMed  Google Scholar 

  • Niu G (2018) Genomics-driven natural product discovery in Actinomycetes. Trends Biotechnol 36:238–241

    Article  CAS  PubMed  Google Scholar 

  • Olano C, Méndez C, Salas JA (2009) Antitumor compounds from marine actinomycetes. Mar Drugs 7:210–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira GH, Al-Kindi SG, Caimi PF, Lazarus HM (2016) Maximizing anthracycline tolerability in hematologic malignancies: treat to each heart’s content. Blood Rev 30:169–178

    Article  CAS  PubMed  Google Scholar 

  • Osada N, Kosuge Y, Ishige K, Ito Y (2013) Mithramycin, an agent for developing new therapeutic drugs for neurodegenerative diseases. J Pharmacol Sci 122:251–256

    Article  CAS  PubMed  Google Scholar 

  • Overmann J, Lepleux C (2016) Marine bacteria and archaea: diversity, adaptations, and culturability. In: The marine microbiome. Springer, pp 21–55

  • Patin NV, Schorn M, Aguinaldo K, Lincecum T, Moore BS, Jensen PR (2017) Effects of actinomycete secondary metabolites on sediment microbial communities. Appl Environ Microbiol 83(4):e02676–e02616

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng S, Zhao M (2009) Pharmaceutical bioassays: methods and applications. John Wiley & Sons

  • Quintero M, Velásquez A, Jutinico LM, Jiménez-Vergara E, Blandón LM, Martinez K, Lee HS, Gómez-León J (2018) Bioprospecting from marine coastal sediments of Colombian Caribbean: screening and study of antimicrobial activity. J Appl Microbiol 125:753–765

    Article  CAS  PubMed  Google Scholar 

  • Rao KVR, Mani P, Satyanarayana B, Rao TR (2017) Purification and structural elucidation of three bioactive compounds isolated from Streptomyces coelicoflavus BC 01 and their biological activity. 3 Biotech 7:24

    CAS  Google Scholar 

  • Seidel V (2005) Initial and bulk extraction of natural products isolation. In Natural products isolation. Humana Press, pp 27–41

  • Shirling E, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Evol Microbiol 16:313–340

    Google Scholar 

  • Staneck JL, Roberts GD (1974) Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teicher BA (2013) Anticancer drug development guide: preclinical screening, clinical trials, and approval. Springer Science & Business Media

  • Vengoji R, Macha MA, Batra SK, Shonka NA (2018) Natural products: a hope for glioblastoma patients. Oncotarget 9:22194

    Article  PubMed  PubMed Central  Google Scholar 

  • Weaver MS, Navid F, Huppmann A, Meany H, Angiolillo A (2015) Vincristine and dactinomycin in infantile myofibromatosis with a review of treatment options. J Pediatr Hematol Oncol 37:237–241

    Article  CAS  PubMed  Google Scholar 

  • Williams S (1989) Genus Streptomyces Waksman and Henrici 1943 BERGEY’s manual of syntematic bacteriology 4:2452–2492

  • Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Zhang W, Jin Y, Jin M, Yu X (2008) A comparative study on the phylogenetic diversity of culturable actinobacteria isolated from five marine sponge species. Antonie Van Leeuwenhoek 93:241–248

    Article  CAS  PubMed  Google Scholar 

  • Zotchev S, Sekurova O, Kurtboke D (2017) Metagenomics of marine actinomycetes: from functional gene diversity to biodiscovery. In: Marine OMICS: prinicples and applications. CRC Press, pp 165–186

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Gozari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 80 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gozari, M., Zaheri, A., Jahromi, S.T. et al. Screening and characterization of marine actinomycetes from the northern Oman Sea sediments for cytotoxic and antimicrobial activity. Int Microbiol 22, 521–530 (2019). https://doi.org/10.1007/s10123-019-00083-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10123-019-00083-3

Keywords

Navigation