Skip to main content
Log in

Molecular Dynamics Simulation Studies on the Micromorphology and Proton Transport of Nafion/Ti3C2Tx Composite Membrane

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The perfluorosulfonic acid (PFSA) membrane doped with two-dimensional conductive filler Ti3C2Tx is a fuel cell proton exchange membrane with high application potential. Experimental studies showed that the proton conductivity of Nafion/Ti3C2Tx composite membrane is improved significantly compared with that in pure Nafion. However, the microscopic mechanism of doping on the enhancement of membrane performance is remain unclear now. In this work, molecular dynamics simulation was used to investigate the microscopic morphology and proton transport behaviors of Nafion/Ti3C2Tx composite membrane at the molecular level. The results shown that there were significant differences about the diffusion kinetics of water molecules and hydroxium ions in Nafion/Ti3C2Tx at low and high hydration levels in the nanoscale region. With the increase of water content, Ti3C2Tx in membrane was gradually surrounded by ambient water molecules to form a hydration layer, and forming a relatively continuous proton transport channel between Nafion polymer and Ti3C2Tx monomer. The continuous proton transport channel could increase the number of binding sites of proton and thus achieving high proton conductivity and high mobility of water molecules at higher hydration level. The current work can provide a theoretical guidance for designing new type of Nafion composite membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu, T. C.; Wang, C. S.; Hu, Z. Y.; Zheng, J. J.; Jiang, S. H.; He, S. J.; Hou, H. Q. High strength and stable proton exchange membrane based on perfluorosulfonic acid/polybenzimidazole. Chinese J. Polym. Sci. 2022, 40, 764–771.

    Article  CAS  Google Scholar 

  2. Jiao, K.; Xuan, J.; Du, Q.; Bao, Z.; Xie, B.; Wang, B.; Zhao, Y.; Fan, L.; Wang, H.; Hou, Z.; Huo, S.; Brandon, N. P.; Yin, Y.; Guiver, M. D. Designing the next generation of proton-exchange membrane fuel cells. Nature 2021, 595, 361–369.

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Tellez Cruz, M. M.; Escorihuela, J.; Solorza Feria, O.; Compan, V. Proton exchange membrane fuel cells (PEMFCs): advances and challenges. Polymers 2021, 13, 3046.

    Article  Google Scholar 

  4. Hua, Z.; Zheng, Z.; Pahon, E.; Péra, M. C.; Gao, F. A review on lifetime prediction of proton exchange membrane fuel cells system. J. Power Sources 2022, 529, 231256.

    Article  CAS  Google Scholar 

  5. Chen, X.; Xiao, L.; Qiu, X. S.; Chen, K. C. Properties of multiblock sulfonated poly(arylene ether sulfone)s synthesized by precise controllable post-sulfonation for proton exchange membranes. Chinese J. Polym. Sci. 2022, 40, 754–763.

    Article  CAS  Google Scholar 

  6. Kusoglu, A.; Weber, A. Z. New insights into perfluorinated sulfonic-acid ionomers. Chem. Rev. 2017, 117, 987–1104.

    Article  CAS  PubMed  Google Scholar 

  7. Okonkwo, P. C.; Ben Belgacem, I.; Emori, W.; Uzoma, P. C. Nafion degradation mechanisms in proton exchange membrane fuel cell (PEMFC) system: a review. Int. J. Hydrogen Energy 2021, 46, 27956–27973.

    Article  CAS  Google Scholar 

  8. Pan, M.; Pan, C.; Li, C.; Zhao, J. A review of membranes in proton exchange membrane fuel cells: transport phenomena, performance and durability. Renew. Sust. Energy Rev. 2021, 141, 110771.

    Article  CAS  Google Scholar 

  9. Hickner, M. A.; Ghassemi, H.; Kim, Y. S.; Einsla, B. R.; McGrath, J. E. Alternative polymer systems for proton exchange membranes (PEMs). Chem. Rev. 2004, 104, 4587–4612.

    Article  CAS  PubMed  Google Scholar 

  10. Yang, C. A comparison of physical properties and fuel cell performance of Nafion and zirconium phosphate/Nafion composite membranes. J. Membr. Sci. 2004, 237, 145–161.

    Article  CAS  Google Scholar 

  11. He, H.; Zhu, Y.; Li, T.; Song, S.; Zhai, L.; Li, X.; Wu, L.; Li, H. Supramolecular anchoring of polyoxometalate amphiphiles into Nafion nanophases for enhanced proton conduction. ACS Nano 2022, 16, 19240–19252.

    Article  CAS  PubMed  Google Scholar 

  12. Liu, Q.; Li, Z.; Wang, D.; Li, Z.; Peng, X.; Liu, C.; Zheng, P. Metal organic frameworks modified proton exchange membranes for fuel cells. Front. Chem. 2020, 8, 694.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Beauger, C.; Lainé, G.; Burr, A.; Taguet, A.; Otazaghine, B. Improvement of Nafion®-sepiolite composite membranes for PEMFC with sulfo-fluorinated sepiolite. J. Membr. Sci. 2015, 495, 392–403.

    Article  CAS  Google Scholar 

  14. Tsai, C. H.; Wang, C. C.; Chang, C. Y.; Lin, C. H.; Chen Yang, Y. W. Enhancing performance of Nafion®-based PEMFC by 1-D channel metal-organic frameworks as PEM filler. Int. J. Hydrogen Energy 2014, 39, 15696–15705.

    Article  CAS  Google Scholar 

  15. Liu, X.; Yuan, H.; Wang, C.; Zhang, S.; Zhang, L.; Liu, X.; Liu, F.; Zhu, X.; Rohani, S.; Ching, C.; Lu, J. A novel PVDF/PFSA-g-GO ultrafiltration membrane with enhanced permeation and antifouling performances. Sep. Purif. Technol. 2020, 233, 116038.

    Article  Google Scholar 

  16. Wang, C.; Zhang, L.; Yuan, H.; Fu, Y.; Zeng, Z.; Lu, J. Preparation of a PES/PFSA-g-MWCNT ultrafiltration membrane with improved permeation and antifouling properties. New J. Chem. 2021, 45, 4950–4962.

    Article  CAS  Google Scholar 

  17. Hao, J.; Li, X.; Yu, S.; Jiang, Y.; Luo, J.; Shao, Z.; Yi, B. Development of proton-conducting membrane based on incorporating a proton conductor 1,2,4-triazolium methanesulfonate into the Nafion membrane. J. Energy Chem. 2015, 24, 199–206.

    Article  Google Scholar 

  18. Lu, Y. H.; Cao, Y.; Lu, Y. W.; Yang, T. Thermal stability and lifetime of [AMIM]Cl-PFSA composite membranes. J. Therm. Anal. Calorim. 2017, 128, 1601–1615.

    Article  CAS  Google Scholar 

  19. Yin, C.; Li, J.; Zhou, Y.; Zhang, H.; Fang, P.; He, C. Enhancement in proton conductivity and thermal stability in Nafion membranes induced by incorporation of sulfonated carbon nanotubes. ACS Appl. Mater. Interfaces 2018, 10, 14026–14035.

    Article  CAS  PubMed  Google Scholar 

  20. Vinothkannan, M.; Kim, A. R.; Gnana Kumar, G.; Yoo, D. J. Sulfonated graphene oxide/Nafion composite membranes for high temperature and low humidity proton exchange membrane fuel cells. RSC Adv. 2018, 8, 7494–7508.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, H.; Sun, N.; Xu, X.; Wang, S.; Kang, W.; Zhuang, X.; Yin, Y.; Cheng, B. Adenosine triphosphate@graphene oxide proton channels for proton exchange membranes constructed via electrostatic layer-by-layer deposition. J. Membr. Sci. 2021, 620, 118880.

    Article  CAS  Google Scholar 

  22. Yao, J.; Xu, G.; Zhao, Z.; Guo, J.; Li, S.; Cai, W.; Zhang, S. An enhanced proton conductivity and reduced methanol permeability composite membrane prepared by sulfonated covalent organic nanosheets/Nafion. Int. J. Hydrogen Energy 2019, 44, 24985–24996.

    Article  CAS  Google Scholar 

  23. Prapainainar, P.; Pattanapisutkun, N.; Prapainainar, C.; Kongkachuichay, P. Incorporating graphene oxide to improve the performance of Nafion-mordenite composite membranes for a direct methanol fuel cell. Int. J. Hydrogen Energy 2019, 44, 362–378.

    Article  CAS  Google Scholar 

  24. Al Munsur, A. Z.; Goo, B. H.; Kim, Y.; Kwon, O. J.; Paek, S. Y.; Lee, S. Y.; Kim, H. J.; Kim, T. H. Nafion-based proton-exchange membranes built on cross-linked semi-interpenetrating polymer networks between poly(acrylic acid) and poly(vinyl alcohol). ACS Appl. Mater. Interfaces 2021, 13, 28188–28200.

    Article  CAS  PubMed  Google Scholar 

  25. Ryu, S.; Lee, B.; Kim, J. H.; Pak, C.; Moon, S. H. High-temperature operation of PEMFC using pore-filling PTFE/Nafion composite membrane treated with electric field. Int. J. Energy Res. 2021, 45, 19136–19146.

    Article  CAS  Google Scholar 

  26. Ru, C.; Gu, Y.; Duan, Y.; Zhao, C.; Na, H. Enhancement in proton conductivity and methanol resistance of Nafion membrane induced by blending sulfonated poly(arylene ether ketones) for direct methanol fuel cells. J. Membr. Sci. 2019, 573, 439–447.

    Article  CAS  Google Scholar 

  27. Ru, C.; Gu, Y.; Duan, Y.; Na, H.; Zhao, C. Nafion based semi-interpenetrating polymer network membranes from a cross-linkable SPAEK and a fluorinated epoxy resin for DMFCs. Electrochim. Acta 2019, 324, 134873.

    Article  CAS  Google Scholar 

  28. Gong, K.; Zhou, K.; Qian, X.; Shi, C.; Yu, B. MXene as emerging nanofillers for high-performance polymer composites: a review. Compos. B Eng. 2021, 217, 108867.

    Article  CAS  Google Scholar 

  29. Yang, Q.; Eder, S. J.; Martini, A.; Grützmacher, P. G. Effect of surface termination on the balance between friction and failure of Ti3C2Tx MXenes. NPJ Mater. Degrad. 2023, 7, 6.

    Article  CAS  Google Scholar 

  30. Tunesi, M. M.; Soomro, R. A.; Han, X.; Zhu, Q.; Wei, Y.; Xu, B. Application of MXenes in environmental remediation technologies. Nano Converg. 2021, 8, 5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Soleymaniha, M.; Shahbazi, M. A.; Rafieerad, A. R.; Maleki, A.; Amiri, A. Promoting role of MXene nanosheets in biomedical sciences: therapeutic and biosensing innovations. Adv. Healthc. Mater. 2019, 8, 1801137.

    Article  Google Scholar 

  32. Huang, K.; Li, Z.; Lin, J.; Han, G.; Huang, P. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem. Soc. Rev. 2018, 47, 5109–5124.

    Article  CAS  PubMed  Google Scholar 

  33. Pandey, R. P.; Rasool, K.; Madhavan, V. E.; Aϊssa, B.; Gogotsi, Y.; Mahmoud, K. A. Ultrahigh-flux and fouling-resistant membranes based on layered silver/MXene (Ti3C2Tx) nanosheets. J. Mater. Chem. A 2018, 6, 3522–3533.

    Article  CAS  Google Scholar 

  34. Zhou, H.; Han, S. J.; Lee, H. D.; Zhang, D.; Anayee, M.; Jo, S. H.; Gogotsi, Y.; Lee, T. W. Overcoming the limitations of MXene electrodes for solution-processed optoelectronic devices. Adv. Mater. 2022, 34, 2206377.

    Article  CAS  Google Scholar 

  35. Wang, J.; Zhai, P.; Zhao, T.; Li, M.; Yang, Z.; Zhang, H.; Huang, J. Laminar MXene-Nafion-modified separator with highly inhibited shuttle effect for long-life lithium-sulfur batteries. Electrochim. Acta 2019, 320, 134558.

    Article  CAS  Google Scholar 

  36. Jang, J.; Kang, Y.; Kim, K.; Kim, S.; Son, M.; Chee, S. S.; Kim, I. S. Concrete-structured Nafion@MXene/Cellulose acetate cation exchange membrane for reverse electrodialysis. J. Membr. Sci. 2022, 646, 120239.

    Article  CAS  Google Scholar 

  37. Tang, X.; Zhou, Z.; Jiang, Y.; Wang, Q.; Sun, Q.; Zu, L.; Gao, X.; Lian, H.; Cao, M.; Cui, X. MXene enhanced the electromechanical performance of a Nafion-based actuator. Materials 2022, 15, 2833.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee, S. J.; Lee, D. H.; Lee, W. Y. An electrochemical sensor for capsaicin based on two-dimensional titanium carbide (MXene)-doped titania-Nafion composite film. Microchem. J. 2023, 185, 108216.

    Article  CAS  Google Scholar 

  39. Guan, P.; Lei, J.; Zou, Y.; Zhang, Y. Improved thermo-mechanical properties and reduced hydrogen permeation of short side-chain perfluorosulfonic acid membranes doped with Ti3C2Tx. Materials 2021, 14, 7875.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu, Y.; Zhang, J.; Zhang, X.; Li, Y.; Wang, J. Ti3C2Tx filler effect on the proton conduction property of polymer electrolyte membrane. ACS Appl. Mater. Interfaces 2016, 8, 20352–20363.

    Article  CAS  PubMed  Google Scholar 

  41. Savage, J.; Tse, Y. L. S.; Voth, G. A. Proton transport mechanism of perfluorosulfonic acid membranes. J. Phys. Chem. C 2014, 118, 17436–17445.

    Article  CAS  Google Scholar 

  42. Li, J.; Jin, S. H.; Lan, G. C.; Xu, Z. S.; Wang, L. T.; Wang, N.; Li, L. J. Research on the glass transition temperature and mechanical properties of poly(vinyl chloride)/dioctyl phthalate (PVC/DOP) blends by molecular dynamics simulations. Chinese J. Polym. Sci. 2019, 37, 834–840.

    Article  CAS  Google Scholar 

  43. Wang, D. D.; Yu, K. F.; Xu, X. L.; Xu, W. S. Molecular dynamics study of star polymer melts under start-up shear. Chinese J. Polym. Sci. 2022, 40, 807–816.

    Article  CAS  Google Scholar 

  44. Kritikos, G.; Pant, R.; Sengupta, S.; Karatasos, K.; Venkatnathan, A.; Lyulin, A. V. Nanostructure and dynamics of humidified Nafion/graphene-oxide composites via molecular dynamics simulations. J. Phys. Chem. C 2018, 122, 22864–22875.

    Article  CAS  Google Scholar 

  45. Mabuchi, T.; Tokumasu, T. Relationship between proton transport and morphology of perfluorosulfonic acid membranes: a reactive molecular dynamics approach. J. Phys. Chem. B 2018, 122, 5922–5932.

    Article  CAS  PubMed  Google Scholar 

  46. Akbari, S.; Mosavian, M. T. H.; Moosavi, F.; Ahmadpour, A. Does the addition of a heteropoly acid change the water percolation threshold of PFSA membranes. Phys. Chem. Chem. Phys. 2019, 21, 25080–25089.

    Article  CAS  PubMed  Google Scholar 

  47. Savage, J.; Voth, G. A. Proton solvation and transport in realistic proton exchange membrane morphologies. J. Phys. Chem. C 2016, 120, 3176–3186.

    Article  CAS  Google Scholar 

  48. Kuo, A. T.; Urata, S.; Nakabayashi, K.; Watabe, H.; Honmura, S. Coarse-grained molecular dynamics simulation of perfluorosulfonic acid polymer in water-ethanol mixtures. Macromolecules 2021, 54, 609–620.

    Article  ADS  CAS  Google Scholar 

  49. Tarokh, A.; Karan, K.; Ponnurangam, S. Atomistic MD study of Nafion dispersions: role of solvent and counterion in the aggregate structure, ionic clustering, and acid dissociation. Macromolecules 2019, 53, 288–301.

    Article  ADS  Google Scholar 

  50. Kuo, A. T.; Takeuchi, K.; Tanaka, A.; Urata, S.; Okazaki, S.; Shinoda, W. Exploring the effect of pendent side chain length on the structural and mechanical properties of hydrated perfluorosulfonic acid polymer membranes by molecular dynamics simulation. Polymer 2018, 146, 53–62.

    Article  CAS  Google Scholar 

  51. Kuo, A. T.; Shinoda, W.; Okazaki, S. Molecular dynamics study of the morphology of hydrated perfluorosulfonic acid polymer membranes. J. Phys. Chem. C 2016, 120, 25832–25842.

    Article  CAS  Google Scholar 

  52. Takeuchi, K.; Kuo, A. T.; Hirai, T.; Miyajima, T.; Urata, S.; Terazono, S.; Okazaki, S.; Shinoda, W. Hydrogen permeation in hydrated perfluorosulfonic acid polymer membranes: effect of polymer crystallinity and equivalent weight. J. Phys. Chem. C 2019, 123, 20628–20638.

    Article  CAS  Google Scholar 

  53. Cui, R.; Li, S.; Yu, C.; Wang, Y.; Zhou, Y. Understanding the mechanism of nitrogen transport in the perfluorinated sulfonic-acid hydrated membranes via molecular dynamics simulations. J. Membr. Sci. 2022, 648, 120328.

    Article  CAS  Google Scholar 

  54. Fan, L.; Xi, F.; Wang, X.; Xuan, J.; Jiao, K. Effects of side chain length on the structure, oxygen transport and thermal conductivity for perfluorosulfonic acid membrane: molecular dynamics simulation. J. Electrochem. Soc. 2019, 166, F511–F518.

    Article  CAS  Google Scholar 

  55. Ban, S.; Huang, C.; Yuan, X. Z.; Wang, H. Molecular simulation of gas transport in hydrated Nafion membranes: influence of aqueous nanostructure. J. Phys. Chem. C 2012, 116, 17424–17430.

    Article  CAS  Google Scholar 

  56. Ban, S.; Huang, C.; Yuan, X. Z.; Wang, H. Molecular simulation of gas adsorption, diffusion, and permeation in hydrated Nafion membranes. J. Phys. Chem. B 2011, 115, 11352–11358.

    Article  CAS  PubMed  Google Scholar 

  57. Cui, R.; Li, S.; Yu, C.; Zhou, Y. The evolution of hydrogen bond network in Nafion via molecular dynamics simulation. Macromolecules 2023, 56, 1688–1703.

    Article  ADS  CAS  Google Scholar 

  58. Sun, S.; Ling, L.; Xiong, Y.; Zhang, Y.; Li, Z. Trifluoromethanesulfonimide-based hygroscopic semi-interpenetrating polymer network for enhanced proton conductivity of Nafion-based proton exchange membranes at low humidity. J. Membr. Sci. 2020, 612, 118339.

    Article  CAS  Google Scholar 

  59. Atrazhev, V. V.; Astakhova, T. Y.; Sultanov, V. I.; Perry, M. L.; Burlatsky, S. F. Molecular dynamic study of water-cluster structure in PFSA and PFIA ionomers. J. Electrochem. Soc. 2017, 164, F1265–F1271.

    Article  CAS  Google Scholar 

  60. Li, Z. Z.; Chen, L.; Tao, W. Q. Molecular dynamics simulation of water permeation through the Nafion membrane. Numer. Heat Tr. A-Appl. 2016, 70, 1232–1241.

    Article  ADS  CAS  Google Scholar 

  61. Daly, K. B.; Benziger, J. B.; Debenedetti, P. G.; Panagiotopoulos, A. Z. Molecular dynamics simulations of water sorption in a perfluorosulfonic acid membrane. J. Phys. Chem. B 2013, 117, 12649–12660.

    Article  CAS  PubMed  Google Scholar 

  62. Gonçalves, W.; Mabuchi, T.; Tokumasu, T. Nucleation and growth of cavities in hydrated Nafion membranes under tensile strain: a molecular dynamics study. J. Phys. Chem. C 2019, 123, 28958–28968.

    Article  Google Scholar 

  63. Kuo, A. T.; Miyazaki, Y.; Jang, C.; Miyajima, T.; Urata, S.; Nielsen, S. O.; Okazaki, S.; Shinoda, W. Large-scale molecular dynamics simulation of perfluorosulfonic acid membranes: remapping coarse-grained to all-atomistic simulations. Polymer 2019, 181, 121766.

    Article  Google Scholar 

  64. Kuo, A. T.; Tanaka, A.; Irisawa, J.; Shinoda, W.; Okazaki, S. Molecular dynamics study on the mechanical deformation of hydrated perfluorosulfonic acid polymer membranes. J. Phys. Chem. C 2017, 121, 21374–21382.

    Article  CAS  Google Scholar 

  65. Xie, J.; Ban, S.; Liu, B.; Zhou, H. A molecular simulation study of chemical degradation and mechanical deformation of hydrated Nafion membranes. Appl. Surf. Sci. 2016, 362, 441–447.

    Article  ADS  CAS  Google Scholar 

  66. Maiti, T. K.; Singh, J.; Maiti, S. K.; Majhi, J.; Ahuja, A.; Singh, M.; Bandyopadhyay, A.; Manik, G.; Chattopadhyay, S. Molecular dynamics simulations and experimental studies of the perfluorosulfonic acid-based composite membranes containing sulfonated graphene oxide for fuel cell applications. Eur. Polym. J. 2022, 174, 111345.

    Article  CAS  Google Scholar 

  67. Haghighi Asl, M.; Moosavi, F.; Akbari, S. Mixed membrane matrices (MMMs) based on Nafion® pristine/defected-UiO-66(Zr) MOFs: assessment of the effects of dopants on cluster morphology. Mol. Syst. Des. Eng. 2022, 7, 969–985.

    Article  CAS  Google Scholar 

  68. Liu, Y.; Sambasivarao, S. V.; Horan, J. L.; Yang, Y.; Maupin, C. M.; Herring, A. M. A combined theoretical and experimental investigation of the transport properties of water in a perfluorosulfonic acid proton exchange membrane doped with the heteropoly acids, H3PW12O40 or H4SiW12O40. J. Phys. Chem. C 2013, 118, 854–863.

    Article  Google Scholar 

  69. Sambasivarao, S. V.; Liu, Y.; Horan, J. L.; Seifert, S.; Herring, A. M.; Maupin, C. M. Enhancing proton transport and membrane lifetimes in perfluorosulfonic acid proton exchange membranes: a combined computational and experimental evaluation of the structure and morphology changes due to H3PW12O40 doping. J. Phys. Chem. C 2014, 118, 20193–20202.

    Article  CAS  Google Scholar 

  70. Akbari, S.; Hamed Mosavian, M. T.; Moosavi, F.; Ahmadpour, A. Elucidating the morphological aspects and proton dynamics in a hybrid perfluorosulfonic acid membrane for medium-temperature fuel cell applications. Phys. Chem. Chem. Phys. 2018, 20, 29778–29789.

    Article  CAS  PubMed  Google Scholar 

  71. Akbari, S.; Hamed Mosavian, M. T.; Moosavi, F.; Ahmadpour, A. Atomistic simulation of proton transfer ability of isopoly acid (IPA)/heteropoly acid (HPA) doped Nafion® 117 for high-temperature fuel cell applications. Compos. B Eng. 2019, 161, 402–410.

    Article  CAS  Google Scholar 

  72. Lee, O. S.; Madjet, M. E.; Mahmoud, K. A. Antibacterial mechanism of multifunctional MXene nanosheets: domain formation and phase transition in lipid bilayer. Nano Lett. 2021, 21, 8510–8517.

    Article  ADS  CAS  PubMed  Google Scholar 

  73. Hope, M. A.; Forse, A. C.; Griffith, K. J.; Lukatskaya, M. R.; Ghidiu, M.; Gogotsi, Y.; Grey, C. P. NMR reveals the surface functionalisation of Ti3C2 MXene. Phys. Chem. Chem. Phys. 2016, 18, 5099–5102.

    Article  CAS  PubMed  Google Scholar 

  74. Martinez, L.; Andrade, R.; Birgin, E. G.; Martinez, J. M. PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 2009, 30, 2157–2164.

    Article  CAS  PubMed  Google Scholar 

  75. Wang, C.; Clark, J. K.; Kumar, M.; Paddison, S. J. An ab initio study of the primary hydration and proton transfer of CF3SO3H and CF3O(CF2)2SO3H: effects of the hybrid functional and inclusion of diffuse functions. Solid State Ion. 2011, 199–200, 6–13.

    Article  Google Scholar 

  76. Mabuchi, T.; Tokumasu, T. Effect of bound state of water on hydronium ion mobility in hydrated Nafion using molecular dynamics simulations. J. Chem. Phys. 2014, 141, 104904.

    Article  ADS  PubMed  Google Scholar 

  77. Levitt, M.; Hirshberg, M.; Sharon, R.; Laidig, K. E.; Daggett, V. Calibration and testing of a water model for simulation of the molecular dynamics of proteins and nucleic acids in solution. J. Phys. Chem. B 1997, 101, 5051–5061.

    Article  CAS  Google Scholar 

  78. Jang, S. S.; Molinero, V.; Çagin, T.; Goddard, W. A. Nanophase-segregation and transport in Nafion 117 from molecular dynamics simulations: effect of monomeric sequence. J. Phys. Chem. B 2004, 108, 3149–3157.

    Article  CAS  Google Scholar 

  79. Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 2002, 114, 10024–10035.

    Article  Google Scholar 

  80. Hu, T.; Wang, J.; Zhang, H.; Li, Z.; Hu, M.; Wang, X. Vibrational properties of Ti3C2 and Ti3C2T2 (T = O, F, OH) monosheets by first-principles calculations: a comparative study. Phys. Chem. Chem. Phys. 2015, 17, 9997–10003.

    Article  CAS  PubMed  Google Scholar 

  81. Xu, K.; Lin, Z.; Merlet, C.; Taberna, P. L.; Miao, L.; Jiang, J.; Simon, P. Tracking ionic rearrangements and interpreting dynamic volumetric changes in two-dimensional metal carbide supercapacitors: a molecular dynamics simulation study. ChemSusChem 2018, 11, 1892–1899.

    Article  CAS  PubMed  Google Scholar 

  82. Abraham, M. J.; Murtola, T.; Schulz, R.; Pall, S.; Smith, J. C.; Hess, B.; Lindahl, E. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. Softwarex 2015, 1–2, 19–25.

    Article  ADS  Google Scholar 

  83. Martyna, G. J.; Klein, M. L.; Tuckerman, M. Nosé-Hoover chains: the canonical ensemble via continuous dynamics. J. Chem. Phys. 1992, 97, 2635–2643.

    Article  ADS  Google Scholar 

  84. Parrinello, M.; Rahman, A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 1981, 52, 7182–7190.

    Article  ADS  CAS  Google Scholar 

  85. Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995, 103, 8577–8593.

    Article  ADS  CAS  Google Scholar 

  86. Liu, W.; Hong, G.; Dai, D.; Li, L.; Dolg, M. The Beijing four-component density functional program package (BDF) and its application to EuO, EuS, YbO and YbS. Theor. Chem. Acc. 1997, 96, 75–83.

    Article  CAS  Google Scholar 

  87. Zhang, Y.; Suo, B.; Wang, Z.; Zhang, N.; Li, Z.; Lei, Y.; Zou, W.; Gao, J.; Peng, D.; Pu, Z.; Xiao, Y.; Sun, Q.; Wang, F.; Ma, Y.; Wang, X.; Guo, Y.; Liu, W. BDF: a relativistic electronic structure program package. J. Chem. Phys. 2020, 152, 064113.

    Article  ADS  PubMed  Google Scholar 

  88. Liu, W. J.; Wang, F.; Li, L. M. The Beijing Density Functional (BDF) program package: methodologies and applications. J. Theor. Comput. Chem. 2003, 2, 257–272.

    Article  CAS  Google Scholar 

  89. Liu, W. J.; Wang, F.; Li, L. Relativistic Density Functional Theory: The BDF Program Package. World Scientific, Singapore, 2004, p. 257–282.

    Google Scholar 

  90. Wang, Z.; Li, Z.; Zhang, Y.; Liu, W. Analytic energy gradients of spin-adapted open-shell time-dependent density functional theory. J. Chem. Phys. 2020, 153, 164109.

    Article  ADS  CAS  PubMed  Google Scholar 

  91. Hongzhiwei Technology, Device Studio, Version 2023A, China, 2023. Available online: https://cloud.hzwtech.com/web/product-service?id=6 (accessed on Aug., 23rd).

  92. Morris, D. R.; Sun, X. Water-sorption and transport properties of Nafion 117. J. Appl. Polym. Sci. 1993, 50, 1445–1452.

    Article  CAS  Google Scholar 

  93. Weber, A. Z.; Newman, J. Transport in polymer-electrolyte membranes: II. Mathematical model. J. Electrochem. Soc. 2004, 151, A311–A325.

    Article  CAS  Google Scholar 

  94. Ohkubo, T.; Kidena, K.; Takimoto, N.; Ohira, A. Molecular dynamics simulations of Nafion and sulfonated polyether sulfone membranes. I. Effect of hydration on aqueous phase structure. J. Mol. Model. 2011, 17, 739–755.

    Article  CAS  PubMed  Google Scholar 

  95. Liu, J.; Suraweera, N.; Keffer, D. J.; Cui, S.; Paddison, S. J. On the relationship between polymer electrolyte structure and hydrated morphology of perfluorosulfonic acid membranes. J. Phys. Chem. C 2010, 114, 11279–11292.

    Article  CAS  Google Scholar 

  96. Dixit, S.; Crain, J.; Poon, W. C.; Finney, J. L.; Soper, A. K. Molecular segregation observed in a concentrated alcohol-water solution. Nature 2002, 411, 829–832.

    Article  ADS  Google Scholar 

  97. Zhou, A.; Liu, Y.; Li, S.; Wang, X.; Ying, G.; Xia, Q.; Zhang, P. From structural ceramics to 2D materials with multi-applications: a review on the development from MAX phases to MXenes. J. Adv. Ceram. 2021, 10, 1194–1242.

    Article  CAS  Google Scholar 

  98. Devanathan, R.; Venkatnathan, A.; Rousseau, R.; Dupuis, M.; Frigato, T.; Gu, W.; Helms, V. Atomistic simulation of water percolation and proton hopping in Nafion fuel cell membrane. J. Phys. Chem. B 2010, 114, 13681–13690.

    Article  CAS  PubMed  Google Scholar 

  99. Zawodzinski, T. A.; Neeman, M.; Sillerud, L. O.; Gottesfeld, S. Determination of water diffusion coefficients in perfluorosulfonate ionomeric membranes. J. Phys. Chem. 1991, 95, 6040–6044.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key R&D Program of China (Nos. 2020YFB1505500 and 2020YFB1505503). We gratefully acknowledge HZWTECH for providing computation facilities. C. Y. thanks Shuoqi Sun for help and discussions regarding this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Su-Peng Pei or Chun-Yang Yu.

Ethics declarations

The authors declare no interest conflict.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, ZY., Pei, SP., Yu, CY. et al. Molecular Dynamics Simulation Studies on the Micromorphology and Proton Transport of Nafion/Ti3C2Tx Composite Membrane. Chin J Polym Sci 42, 373–387 (2024). https://doi.org/10.1007/s10118-024-3063-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-024-3063-2

Keywords

Navigation