Skip to main content
Log in

Molecular dynamics simulations of Nafion and sulfonated polyether sulfone membranes. I. Effect of hydration on aqueous phase structure

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We measured the water uptakes and proton conductivities of a Nafion membrane and three sulfonated polyether sulfone membranes (SPESs) with different values of ion-exchange capacity (IEC = 0.75, 1.0 and 1.4 meq/g) in relation to relative humidity in order to apply the findings to polymer electrolyte membrane fuel cells. The number of water molecules per sulfonic acid group λ at each humidity level was independent of the relative humidity for all membranes, but the proton conductivities of the SPESs were inferior to that of Nafion for the same λ value. Classical molecular dynamics simulations for the same membranes were carried out using a consistent force field at λ = 3, 6, 9, 12 and 15. The structural properties of water molecules and hydronium ions at a molecular level were estimated from radial distribution functions and cluster size distributions of water. We found that the radial distribution function of S(sulfonic acid)–S(sulfonic acid) of Nafion at λ = 3 indicated a significant correlation between the S–S pair, due to water channels, while the S–S pair of the SPESs showed a poor correlation. The cluster size distribution of water was also calculated in order to estimate the connectivity of the water channel. It is clear that some water is present in the SPESs as small, isolated clusters, especially when the water content is low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9a–d
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Carrette L, Friedrich KA, Stimming U (2001) Fuel cells—fundamentals and applications. Fuel Cells 1:5–39

    Google Scholar 

  2. Doyle M, Rajendran G (2003) Perfluorinated membranes in fuel cell technology and applications. In: Vielstich W, Lamm A, Gasteiger HA (eds) Handbook of fuel cells, vol. 3. Wiley, Chichester, pp 351–395

  3. Paddison SJ (2003) First principles modeling of sulfonic acid based ionomer membranes in fuel cell technology and applications. In: Vielstich W, Lamm A, Gasteiger HA (eds) Handbook of fuel cells, vol. 3. Wiley, Chichester, pp 396–411

  4. Nakano M, Yoshitake M (2003) Composite perfluorinate membranes in fuel cell technology and applications. In: Vielstich W, Lamm A, Gasteiger HA (eds) Handbook of fuel cells, vol. 3. Wiley, Chichester, pp 412–419

  5. Kreuer KD (2003) Hydrocarbon membranes in fuel cell technology and applications. In: Vielstich W, Lamm A, Gasteiger HA (eds) Handbook of fuel cells, vol. 3. Wiley, Chichester, pp 420–435

  6. Zawodzinski TA, Neeman M, Sillerud LO, Gottesfeld S (1991) J Phys Chem B 95:6040–6047

    Article  CAS  Google Scholar 

  7. Saito M, Tsuzuki S, Hayamizu K, Okada T (2006) J Phys Chem B 110:24410–24417

    Article  CAS  Google Scholar 

  8. Yeo RS (1983) J Electrochem Soc 130:533–538

    Article  CAS  Google Scholar 

  9. Uosaki K, Okazaki K, Kita H (1990) J Electrochem Soc 287:163–169

    CAS  Google Scholar 

  10. Thompson EL, Capehart TW, Fuller TJ, Jorne J (2006) J Electrochem Soc 153:A2351–A2362

    Article  CAS  Google Scholar 

  11. Mohameda HFM, Ito K, Kobayashi Y, Takimoto N, Takeoka Y, Ohira A (2008) Polymer 49:3091–3097

    Article  Google Scholar 

  12. Ogumi Z, Takehara Z, Yoshizawa S (1984) J Electrochem Soc 131:769–773

    Article  CAS  Google Scholar 

  13. Ogumi Z, Takehara Z, Yoshizawa S (1985) J Electrochem Soc 132:2601–2605

    Article  CAS  Google Scholar 

  14. Büchi FN, Wakizoe M, Srinivasan S (1996) J Electrochem Soc 143:2601–2605

    Article  Google Scholar 

  15. Zawodzinski TA, Derouin C, Radzinski S, Sherman RJ, Smith VT, Springer TE, Gottesfeld S (1993) J Electrochem Soc 140:1041–1047

    Article  CAS  Google Scholar 

  16. Kinumoto T, Inaba M, Nakayama Y, Ogata K, Umebayashi R, Tasaka A, Iriyama Y, Abe T, Ogumi Z (2006) J Power Sources 158:1222–1228

    Article  CAS  Google Scholar 

  17. Pozio A, Silva RF, Francesco M, Giorgi L (2003) Electrochim Acta 48:1543–1549

    Article  CAS  Google Scholar 

  18. Aoki M, Uchida H, Watanabe M (2005) Electrochem Commun 7:1434–1438

    Article  CAS  Google Scholar 

  19. Zaidi SMJ, Mikhailenko SD, Robertson GP, Guiver MD, Kaliaguine S (2000) J Membr Sci 173:17–34

    Article  CAS  Google Scholar 

  20. Gil M, Ji XL, Li XF, Na H, Hampsey JE, Lu YF (2004) J Membr Sci 234:75–81

    Article  CAS  Google Scholar 

  21. Li L, Zhang J, Wang YX (2003) J Membr Sci 226:159–167

    Article  CAS  Google Scholar 

  22. Hickner MA, Ghassemi H, Kim YS, Einsla BR, McGrath JE (2004) Chem Rev 104:4587–4611

    Article  CAS  Google Scholar 

  23. Mauritz KA, Moore RB (2004) Chem Rev 104:4535–4585

    Article  CAS  Google Scholar 

  24. HeitnerWirguin C (1996) J Membr Sci 120:1–33

    Article  CAS  Google Scholar 

  25. Kreuer KD, Paddison SJ, Spohr E, Schuster M (2004) Chem Rev 104:4637–4678

    Article  CAS  Google Scholar 

  26. Kim MH, Glinka CJ, Grot SA, Grot WG (2006) Macromolecules 39:4775–4787

    Article  CAS  Google Scholar 

  27. Schmidt-Rohr K, Chen Q (2008) Nat Mater 7:75–83

    Article  CAS  Google Scholar 

  28. Rubatat L, Rollet AL, Gebel G, Diat O (2002) Macromolecules 35:4050–4055

    Article  CAS  Google Scholar 

  29. Gebel G, Lambard J (1997) Macromolecules 30:7914–7920

    Article  CAS  Google Scholar 

  30. Paddison SJ, Elliott JA (2005) J Phys Chem A 109:7583–7593

    Article  CAS  Google Scholar 

  31. Paddison SJ, Zawodzinski TA (1998) Solid State Ion 113:333–340

    Article  Google Scholar 

  32. Eikerling M, Paddison SJ, Pratt LR, Zawodzinski TA (2003) Chem Phys Lett 368:108–114

    Article  CAS  Google Scholar 

  33. Roudgar A, Narasimachary SP, Eikerling M (2008) Chem Phys Lett 457:337–341

    Article  CAS  Google Scholar 

  34. Cui S, Liu J, Selvan ME, Keffer DJ, Edwards BJ, Steele WV (2007) J Phys Chem B 111:2208–2218

    Article  CAS  Google Scholar 

  35. Cui S, Liu J, Selvan ME, Paddison SJ, Keffer DJ, Edwards BJ (2008) J Phys Chem B 112:13273–13284

    Article  CAS  Google Scholar 

  36. Devanathan R, Venkatnathan A, Dupuis M (2007) J Phys Chem B 111:8069–8079

    Article  CAS  Google Scholar 

  37. Devanathan R, Venkatnathan A, Dupuis M (2007) J Phys Chem B 111:13006–13013

    Article  CAS  Google Scholar 

  38. Venkatnathan A, Devanathan R, Dupuis M (2007) J Phys Chem B 111:7234–7244

    Article  CAS  Google Scholar 

  39. Jang SS, Molinero V, Cagin T, Goddard WA (2004) J Phys Chem B 108:3149–3157

    Article  CAS  Google Scholar 

  40. Brandell D, Karo J, Liivat A, Thomas JO (2007) J Mol Model 13:1039–1046

    Article  CAS  Google Scholar 

  41. Urata S, Irisawa J, Takada A, Shinoda W, Tsuzuki S, Mikami M (2005) J Phys Chem B 109:4269–4278

    Article  CAS  Google Scholar 

  42. Kim YS, Wang F, Hickner M, McCartney S, Hong YT, Harrison W, Zawodzinski TA, McGrath JE (2003) J Polym Sci Pt B 41:2816–2828

    Google Scholar 

  43. Kobayashi T, Rikukawa M, Sanui K, Ogata N (1998) Solid State Ion 106:219–225

    Article  CAS  Google Scholar 

  44. Kim YS, Wang F, Hickner M, Zawodzinski TA, McGrath JE (2003) J Membr Sci 212:263–282

    Article  CAS  Google Scholar 

  45. Cho CG, Kim YS, Yu X, Hill M, McGrath JE (2006) J Polym Sci Pol Chem 44:6007–6014

    Article  CAS  Google Scholar 

  46. Sethuraman VA, Weidner JW, Haug AT, Protsailo LV (2008) J Electrochem Soc 155:B119–B124

    Article  CAS  Google Scholar 

  47. Roy A, Hickner MA, Einsla BR, Harrison WL, Mcgrath JE (2009) J Polym Sci Pol Chem 47:384–391

    Article  CAS  Google Scholar 

  48. Scienomics SARL (2002) MAPS, version 3.1. Scienomics SARL, Paris

  49. Maple JR, Hwang MJ, Stockfisch TP, Dinur U, Waldman M, Ewig CS, Hagler AT (1994) J Comput Chem 15:162–182

    Article  CAS  Google Scholar 

  50. Sun H (1998) J Phys Chem B 102:7338–7364

    Article  CAS  Google Scholar 

  51. Pozuelo J, Riande E, Saiz E, Compan V (2006) Macromolecules 25:8862–8866

    Article  Google Scholar 

  52. Hu N, Chen R, Hsu A (2006) Polym Int 55:872–882

    Article  CAS  Google Scholar 

  53. Aeon Technology, Inc. (2002) Direct Force Field, version 6.0. Aeon Technology, Inc., San Diego

  54. Sato F, Hojo S, Sun H (2003) J Phys Chem A 107:248–257

    Article  CAS  Google Scholar 

  55. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  56. Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  57. Miehlich B, Savin A, Stoll H, Preuss H (1989) Chem Phys Lett 157:200–206

    Article  CAS  Google Scholar 

  58. Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265–3269

    Article  CAS  Google Scholar 

  59. Chirlian LE, Francl MM (1987) J Comput Chem 8:894–905

    Article  CAS  Google Scholar 

  60. Plimpton S (1995) J Comput Phys 117:1–19

    Article  CAS  Google Scholar 

  61. Verlet L (1967) Phys Rev 159:98–103

    Article  CAS  Google Scholar 

  62. Hockney RW, Eastwood JW (1981) Computer simulation using particles. McGraw-Hill, New York

  63. Nose S (1986) Mol Phys 57:187–191

    Article  CAS  Google Scholar 

  64. Nose S (1984) J Chem Phys 81:511–519

    Article  CAS  Google Scholar 

  65. Nose S (1984) Mol Phys 52:255–268

    Article  CAS  Google Scholar 

  66. Nose S, Klein ML (1983) J Chem Phys 78:6928–6939

    Article  CAS  Google Scholar 

  67. Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33

    Article  CAS  Google Scholar 

  68. Paddison SJ, Elliott JA (2006) Phys Chem Chem Phys 8:2193–2203

    Article  CAS  Google Scholar 

  69. Paddison SJ, Elliott JA (2006) Solid State Ion 177:2385–2390

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Sato for helpful discussions on the development of force fields. We are grateful to A. Yashiro of Sumitomo Chemical Co., Ltd. for providing SPES samples. This work was supported by the New Energy Development Organization (NEDO), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Ohkubo.

Appendix

Appendix

Force field parameters

Table 2 Developed CFF-type force field parameters for the Nafion fragment with a sulfonic acid group, as shown in Fig. 3a
Table 3 Developed CFF-type force field parameters for the SPES fragment with a sulfonic acid group, as shown in Fig. 3b
Table 4 Developed CFF-type force field parameters for hydronium, as shown in Fig. 3c

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohkubo, T., Kidena, K., Takimoto, N. et al. Molecular dynamics simulations of Nafion and sulfonated polyether sulfone membranes. I. Effect of hydration on aqueous phase structure. J Mol Model 17, 739–755 (2011). https://doi.org/10.1007/s00894-010-0767-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0767-8

Keywords

Navigation