Skip to main content
Log in

Manipulating the Phase Transition Behavior of Dual Temperature-Responsive Block Copolymers by Adjusting Composition and Sequence

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Temperature-responsive polymers have garnered significant attention due to their ability to respond to external stimuli. In this work, dual temperature-responsive block copolymers are synthesized via reversible addition-fragmentation chain transfer polymerization (RAFT) polymerization utilizing zwitterionic monomer methacryloyl ethyl sulfobetaine (SBMA) and N-isopropyl acrylamide (NIPAAm) as monomers. The thermal responsive behaviors can be easily modulated by incorporating additional hydrophobic monomer benzyl acrylate (BN) or hydrophilic monomer acrylic acid (AA), adjusting concentration or pH, or varying the degree of polymerization of the block chain segments. The cloud points of the copolymers are determined by UV-Vis spectrophotometry, and these copolymers exhibit both controlled upper and lower critical solubility temperatures (LCST and UCST) in aqueous solution. This study analyzes and summarizes the influencing factors of dual temperature responsive block copolymers by exploring the effects of various conditions on the phase transition temperature of temperature-sensitive polymers to explore the relationship between their properties and environment and structure to make them more selective in terms of temperature application range and regulation laws. It is very interesting that the introduction of poly-acrylic acid (PAA) segments in the middle of di-block copolymer PSBMA55-b-PNIPAAm80 to form PSBMA55-b-PAAx-b-PNIPAAm80 results in a reversal of temperature-responsive behaviors from ‘U’ (LCST < UCST) to ‘n’ (LCST > UCST) type, while the copolymer PSBMA55-b-P(NIPAAm80-co-AAx) not. This work provides a clue for tuning the phase transition behavior of polymers for manufacture of extreme smart materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hirayama, S.; Oohora, K.; Uchihashi, T.; Hayashi, T. Thermoresponsive micellar assembly constructed from a hexameric hemoprotein modified with poly(N-isopropylacrylamide) toward an artificial light-harvesting system. J. Am. Chem. Soc. 2020, 142, 1822–1831.

    Article  PubMed  CAS  Google Scholar 

  2. Chen, Y.; Tong, J.; Dong, J.; Luo, J.; Liu, X. A temperature-responsive boronate core cross-linked star (CCS) polymer for fast and highly efficient enrichment of glycoproteins. Small 2019, 15, 1900099.

    Article  Google Scholar 

  3. Zhang, Z.; Collum, D. B. Structures and reactivities of sodiated evans enolates: role of solvation and mixed aggregation on the stereochemistry and mechanism of alkylations. J. Am. Chem. Soc. 2019, 141, 388–401.

    Article  PubMed  Google Scholar 

  4. Miao, Z.; Kubo, T.; Pal, D.; Sumerlin, B. S.; Veige, A. S. pH-responsive water-soluble cyclic polymer. Macromolecules 2019, 52, 6260–6265.

    Article  CAS  Google Scholar 

  5. Zhao, Y.; Zhu, W.; Wu, Y.; Qu, L.; Liu, Z.; Zhang, K. An aggregation-induced emission star polymer with pH and metal ion responsive fluorescence. Polym. Chem. 2016, 7, 6513–6520.

    Article  CAS  Google Scholar 

  6. Chen R.; Jiang X.; Lu G.; Liu W.; Jin W.; Tian G.; Huang X. A well-defined thermo- and pH-responsive double hydrophilic graft copolymer bearing pyridine-containing backbone. Polym. Chem. 2022, 13, 2791–2802.

    Article  CAS  Google Scholar 

  7. Zhou, Y.; Tan, J.; Chong, D.; Wan, X.; Zhang, J. Rapid near-infrared light responsive shape memory polymer hybrids and novel chiral actuators based on photothermal W18O49 nanowires. Adv. Funct. Mater. 2019, 29, 1901202.

    Article  Google Scholar 

  8. Pantuso, E.; Filpo, G.; Nicoletta, F. P. Light-responsive polymer membranes. Adv. Opt. Mater. 2019, 7, 1900252.

    Article  Google Scholar 

  9. Dong, Y. Z.; Kwon, S. H.; Choi, H. J.; Puthiaraj, P.; Ahn, W. S. Electroresponsive polymer-inorganic semiconducting composite (MCTP-Fe3O4) particles and their electrorheology. ACS Omega 2018, 3, 17246–17253.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Servant, A.; Methven, L.; Williams, R. P.; Kostarelos, K. Electroresponsive polymer-carbon nanotube hydrogel hybrids for pulsatile drug delivery in vivo. Adv. Healthc. Mater. 2013, 2, 806–811.

    Article  PubMed  CAS  Google Scholar 

  11. Qiu, N.; Gao, J.; Liu, Q.; Wang, J.; Shen, Y. Enzyme-responsive charge-reversal polymer-mediated effective gene therapy for intraperitoneal tumors. Biomacromolecules 2018, 19, 2308–2319.

    Article  PubMed  CAS  Google Scholar 

  12. Wright, D. B.; Thompson, M. P.; Touve, M. A.; Carlini, A. S.; Gianneschi, N. C. Enzyme-responsive polymer nanoparticles via ring-opening metathesis polymerization-induced self-assembly. Macromol. Rapid Commun. 2019, 40, 1800467.

    Article  Google Scholar 

  13. Hosomi, T.; Masai, H.; Fujihara, T.; Tsuji, Y.; Terao, J. A typical metal-ion-responsive color-tunable emitting insulated piconjugated polymer film. Angew. Chem. Int. Ed. 2016, 55, 13427–13431.

    Article  CAS  Google Scholar 

  14. Huang, Y.; Moini Jazani, A.; Howell, E. P.; Oh, J. K.; Moffitt, M. G. Controlled microfluidic synthesis of biological stimuli-responsive polymer nanoparticles. ACS Appl. Mater. Interfaces 2020, 12, 177–190.

    Article  PubMed  CAS  Google Scholar 

  15. Zhang, Q. M.; Xu, W.; Serpe, M. J. Optical devices constructed from multiresponsive microgels. Angew. Chem. Int. Ed. 2014, 53, 4827–4831.

    Article  CAS  Google Scholar 

  16. Roy, D.; Brooks, W. L. A.; Sumerlin, B. S. New directions in thermoresponsive polymers. Chem. Soc. Rev. 2013, 42, 7214–7243.

    Article  PubMed  CAS  Google Scholar 

  17. Niskanen, J.; Tenhu, H. How to manipulate the upper critical solution temperature (UCST)?. Polym. Chem. 2017, 8, 220–232.

    Article  CAS  Google Scholar 

  18. Quiroz, F. G.; Chilkoti, A. Sequence heuristics to encode phase behaviour in intrinsically disordered protein polymers. Nat. Mater. 2015, 14, 1164–1171.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Pradnya N. P.; Ghoderao, P. N. P.; Lee, C. W.; Byun, H. S. Phase behavior for the poly(2-ethyl-2-oxazoline) supercritical DME alcohol and carbon dioxide 2-ethyl-2-oxazoline mixtures at high pressure. Chem. Eng. J. 2023, 270, 118566.

    Article  Google Scholar 

  20. Seuring, J.; Agarwal, S. Polymers with upper critical solution temperature in aqueous solution. Macromol. Rapid Commun. 2012, 33, 1898–1920.

    Article  PubMed  CAS  Google Scholar 

  21. Southall, N. T.; Dill, K. A.; Haymet, A. D. J. A View of the hydrophobic effect. J. Phys. Chem. B 2002, 106, 521–533.

    Article  CAS  Google Scholar 

  22. Mori, T.; Nakashima, M.; Fukuda, Y.; Minagawa, K.; Tanaka, M.; Maeda, Y. Soluble-insoluble-soluble transitions of aqueous poly(N-vinylacetamide-co-acrylic acid) solutions. Langmuir 2006, 22, 4336–4342.

    Article  PubMed  CAS  Google Scholar 

  23. Hogan, K. J.; Mikos, A. G. Biodegradable thermoresponsive polymers: applications in drug delivery and tissue engineering. Polymer 2020, 211, 123063.

    Article  CAS  Google Scholar 

  24. Kotsuchibashi, Y.; Ebara, M.; Aoyagi, T.; Narain, R. Recent advances in dual temperature responsive block copolymers and their potential as biomedical applications. Polymers 2016, 8, 380–405.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sun, Y.; Nan, D.; Jin, H.; Qu, X. Recent advances of injectable hydrogels for drug delivery and tissue engineering applications. Polym. Test. 2020, 81, 106283.

    Article  CAS  Google Scholar 

  26. Tanaka, T.; Okamoto, M. Reversible temperature-responsive and lectin-recognizing glycosylated block copolymers synthesized by RAFT polymerization. Polym. J. 2018, 50, 523–531.

    Article  CAS  Google Scholar 

  27. Marques, C. F.; Diogo, G. S.; Pina, S.; Oliveira, J. M.; Silva, T. H.; Reis, R. L. Collagen-based bioinks for hard tissue engineering applications: a comprehensive review. J. Mater. Sci. Mater. Med. 2019, 30, 32–44.

    Article  PubMed  CAS  Google Scholar 

  28. Ueki, T. Stimuli-responsive polymers in ionic liquids. Polym. J. 2014, 46, 646–655.

    Article  CAS  Google Scholar 

  29. Wang, S.; Liu, Q.; Li, L.; Urban, M. W. Recent advances in stimuli-responsive commodity polymers. Macromol. Rapid Commun. 2021, 42, 2100054.

    Article  CAS  Google Scholar 

  30. Song, Z.; Wang, K.; Gao, C.; Wang, S.; Zhang, W. A new thermo-, pH-, and CO2-responsive homopolymer of poly[N-[2-(diethylamino)ethyl]acrylamide]: is the diethylamino group underestimated?. Macromolecules 2016, 49, 162–171.

    Article  CAS  Google Scholar 

  31. Seuring, J.; Agarwal, S. Non-ionic homo- and copolymers with H-donor and H-acceptor units with an UCST in water. Macromol. Chem. Phys. 2010, 211, 2109–2117.

    Article  CAS  Google Scholar 

  32. Roth, P. J.; Jochum, F. D.; Forst, F. R.; Zentel, R.; Theato, P. Influence of end groups on the stimulus-responsive behavior of poly[oligo(ethylene glycol) methacrylate] in water. Macromolecules 2010, 43, 4638–4645.

    Article  CAS  Google Scholar 

  33. Feil, H.; Bae, Y. H.; Feijen, J.; Kim, S. W. Effect of comonomer hydrophilicity and ionization on the lower aritical solution temperature of iV-isopropylacrylamide copolymers. Macromolecules 1993, 26, 2496–2500.

    Article  CAS  Google Scholar 

  34. Liu, H.; Ding, A.; Ma, C.; Huang, X.; Feng, C.; Wang, Z.; Wang, Z.; Lu, G. The difluoromethylthio moiety lowers the LCST of oligo(ethylene glycol)-based homopolymers. Polym. Chem. 2020, 11, 5833–5843.

    Article  CAS  Google Scholar 

  35. Woodfield, P. A.; Zhu, Y.; Pei, Y.; Roth, P. J. Hydrophobically modified sulfobetaine copolymers with tunable aqueous UCST through postpolymerization modification of poly(pentafluorophenyl acrylate). Macromolecules 2014, 47, 750–762.

    Article  CAS  Google Scholar 

  36. Roth, P. J.; Davis, T. P.; Lowe, A. B. Comparison between the LCST and UCST transitions of double thermoresponsive diblock copolymers: insights into the behavior of POEGMA in alcohols. Macromolecules 2012, 45, 3221–3230.

    Article  CAS  Google Scholar 

  37. Chang, Y.; Chen, W. Y.; Yandi, W.; Shih, Y. J.; Chu, W. L.; Liu, Y. L.; Chu, C. W.; Ruaan, R. C.; Higuchi, A. Dual-thermoresponsive phase behavior of blood compatible zwitterionic copolymers containing nonionic poly(N-isopropyl acrylamide). Biomacromolecules 2009, 10, 2092–2100.

    Article  PubMed  CAS  Google Scholar 

  38. Willcock, H.; Lu, A.; Hansell, C. F.; Chapman, E.; Collins, I. R.; O’Reilly, R. K. One-pot synthesis of responsive sulfobetaine nanoparticles by RAFT polymerisation: the effect of branching on the UCST cloud point. Polym. Chem. 2014, 5, 1023–1030.

    Article  CAS  Google Scholar 

  39. Seuring, J.; Bayer, F. M.; Huber, K.; Agarwal, S. Upper critical solution temperature of poly(N-acryloyl glycinamide) in water: a concealed property. Macromolecules 2011, 45, 374–384.

    Article  Google Scholar 

  40. Liu, F.; Seuring, J.; Agarwal, S. Controlled radical polymerization of N-acryloylglycinamide and UCST-type phase transition of the polymers. J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 4920–4928.

    Article  CAS  Google Scholar 

  41. Seuring, J.; Agarwal, S. First example of a universal and cost-effective approach: polymers with tunable upper critical solution temperature in water and electrolyte solution. Macromolecules 2012, 45, 3910–3918.

    Article  CAS  Google Scholar 

  42. Audureau, N.; Veith, C.; Coumes, F.; Nguyen, T. P. T.; Rieger, J.; Stoffelbach, F. RAFT-polymerized N-cyanomethylacrylamide-based (co)polymers exhibiting tunable UCST behavior in water. Macromol. Rapid Commun. 2021, 42, e2100556.

    Article  PubMed  Google Scholar 

  43. Sun, X.; Chen, T.; Huang, S.; Cai, F.; Chen, X.; Yang, Z.; Lu, Y.; Peng, H. Stimuli-sensitive assemblies of homopolymers. Langmuir 2009, 25, 11980–11983.

    Article  PubMed  CAS  Google Scholar 

  44. Ma, L.; Liu, R.; Tan, J.; Wang, D.; Jin, X.; Kang, H.; Wu, M.; Huang, Y. Self-assembly and dual-stimuli sensitivities of hydroxypropylcellulose-graft-poly(N,N-dimethyl aminoethyl methacrylate) copolymers in aqueous solution. Langmuir 2010, 26, 8697–8703.

    Article  PubMed  CAS  Google Scholar 

  45. Liu, S.; Liu, M. Synthesis and characterization of temperature- and pH-sensitive poly(N, N-diethylacrylamide-co-methacrylic acid). J. Appl. Polym. Sci. 2003, 90, 3563–3568.

    Article  CAS  Google Scholar 

  46. Audureau, N.; Coumes, F.; Rieger, J.; Stoffelbach, F. ooly(N-cyanoethylacrylamide), a new thermoresponsive homopolymer presenting both LCST and UCST behavior in water. Polym. Chem. 2022, 13, 1075–1083.

    Article  CAS  Google Scholar 

  47. Feng C.; Huang X. Polymer brushes: efficient synthesis and applications. Acc. Chem. Res. 2018, 51, 2314–2323.

    Article  PubMed  CAS  Google Scholar 

  48. Xu B.; Feng C.; Huang X. A versatile platform for precise synthesis of asymmetric molecular brush in one shot. Nat. Commun. 2017, 8, 333–841.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Tatiana V. P.; Alexandr V. B.; Yana A. K.; Anna A. O.; Vladimir V. V. Development of high flux ultrafiltration polyphenylsulfone membranes applying the systems with upper and lower critical solution temperatures: effect of polyethylene glycol molecular weight and coagulation bath temperature. J. Membr. Sci. 2018, 565, 266–280.

    Article  Google Scholar 

  50. Ye S.; Cheng Y.; Guo Z.; Wang X.; Wei W. A lipid toolbox of sugar alcohol fatty acid monoesters for single-component lipid nanoparticles with temperature-controlled release. Colloid Surface B 2023, 228, 113426.

    Article  CAS  Google Scholar 

  51. Hirano, T.; Li, M.; Maeda, K.; Oshimura, M.; Ute, K. Unusually large hysteresis in temperature-responsive phase-transition behavior of aqueous solutions of isotactic copolymers comprising N-ethylacrylamide and (N-isopropylacrylamide. Polymer 2020, 198, 122530.

    Article  CAS  Google Scholar 

  52. Moraes, R. M.; Carvalho, L. T.; Alves, G. M.; Medeiros, S. F.; Bourgeat-Lami, E.; Santos, A. M. Synthesis and self-Assembly of poly(N-Vinylcaprolactam)-b-poly(epsilon-caprolactone) block copolymers via the combination of RAFT/MADIX and ring-opening polymerizations. Polymers 2020, 12, 1252–1272.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 22271207) and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei-Wei He, Li-Fen Zhang or Zhen-Ping Cheng.

Ethics declarations

The authors declare no interest conflict.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, Z., Xu, X., Zhao, HT. et al. Manipulating the Phase Transition Behavior of Dual Temperature-Responsive Block Copolymers by Adjusting Composition and Sequence. Chin J Polym Sci 42, 176–187 (2024). https://doi.org/10.1007/s10118-023-3041-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-3041-0

Keywords

Navigation