Skip to main content
Log in

High Temperature Iron Ethylene Polymerization Catalysts Bearing N, N, N′-2-(1-(2,4-Dibenzhydryl-6-fluorophenylimino)ethyl)-6-(1-(arylphenylimino)ethyl)pyridines

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The N, N, N′-ferrous chloride complexes, [2-{CMeN(2,4-(CHPh)2-6-FC6H2)}-6-(CMeNAr)C5H3N]FeCl2 (Ar = 2,6-Me2C6H3Fe1, 2,6-Et2C6H3Fe2, 2,6-iPr2C6H3Fe3, 2,4,6-Me3C6H2Fe4 and 2,6-Et2-4-MeC6H2Fe5), each possessing one N-2,4-dibenzhydryl-6-fluorophenyl group, were readily synthesized from their respective unsymmetrical bis(imino)pyridines, L1–L5. Structural identification of Fe2 highlighted the variation in the steric properties provided by the dissimilar N-aryl groups. Following pre-treatment with either MAO or MMAO, complexes Fe1–Fe5 all displayed, at an operating temperature of 80 °C, high activities for ethylene polymerization with levels falling in the order: Fe4 > Fe1 > Fe5 > Fe2 > Fe3. Notably, Fe4/MAO displayed the highest activity of 1.94×107 gPE·molFe−1·h−1 of the study with only a modest loss in performance at 90 °C. Generally, the resulting polyethylenes were highly linear (Tm range: 122–132 °C), narrowly disperse and of low molecular weight (Mw range: 6.73–46.04 kg·mol−1), with the most sterically hindered Fe3 forming the highest molecular weight polymer of the series. End-group analysis by 1H- and 13C-NMR spectroscopy revealed saturated alkyl (n-propyl and i-propyl) and unsaturated vinyl chain ends indicative of the role of both β-H elimination and chain transfer to aluminum as termination pathways. By comparison with previously reported iron precatalysts with similar tridentate ligand skeletons, it is evident that the introduction of a large benzhydryl group in combination with a fluorine as the ortho-substituents of one N-aryl group has the effect of enhancing thermal stability of the iron polymerization catalyst whilst maintaining appreciable polymer molecular weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bianchin, C.; Giambastiani, G.; Rios, I. G.; Mantovani, G.; Meli, A.; Segarra, A. M. Ethylene oligomerization, homopolymerization and copolymerization by iron and cobalt catalysts with 2,6-(bis-organylimino)pyridyl ligands. Coord. Chem. Rev. 2006, 250, 1391–1418.

    Article  Google Scholar 

  2. Gibson, V. C.; Redshaw, C.; Solan, G. A. Bis(imino)pyridines: surprisingly reactive ligands and a gateway to new families of catalysts. Chem. Rev. 2007, 107, 1745–1776.

    Article  PubMed  CAS  Google Scholar 

  3. Makio, H; Terao, H.; Iwashita, A.; Fujita, T. FI catalysts for olefin polymerization—a comprehensive treatment. Chem. Rev. 2011, 111, 2363–2449.

    Article  PubMed  CAS  Google Scholar 

  4. Wang, Z.; Liu, Q; Solan, G. A.; Sun, W. H. Recent advances in Ni-mediated ethylene chain growth: Nimine-donor ligand effects on catalytic activity, thermal stability and oligo-/polymer structure. Coord. Chem. Rev. 2017, 350, 68–83.

    Article  CAS  Google Scholar 

  5. Wang, Z.; Solan, G. A.; Zhang, W.; Sun, W. H. Carbocyclic-fused N,N,N-pincer ligands as ring-strain adjustable supports for iron and cobalt catalysts in ethylene oligo-/polymerization. Coord. Chem. Rev. 2018, 363, 92–108.

    Article  CAS  Google Scholar 

  6. Bariashir, C.; Huang, C.; Solan, G. A.; Sun, W. H. Recent advances in homogeneous chromium catalyst design for ethylene tri-, tetra-, oligo- and polymerization. Coord. Chem. Rev. 2019, 385, 208–229.

    Article  CAS  Google Scholar 

  7. Champouret, Y.; Hashmi, O. H.; Visseaux, M. Discrete iron-based complexes: applications in homogeneous coordination-insertion polymerization catalysis. Coord. Chem. Rev. 2019, 390, 127–170.

    Article  CAS  Google Scholar 

  8. Yuan, S. F.; Yan, Y.; Solan, G. A.; Ma, Y.; Sun, W. H. Recent advancements in N-ligated group 4 molecular catalysts for the (co)polymerization of ethylene. Coord. Chem. Rev. 2020, 411, 213254.

    Article  CAS  Google Scholar 

  9. Phillips, A. M. F.; Suo, H.; Silva, M. F. C. G.; Pombeiro, A. J. L.; Sun, W. H. Recent developments in vanadium-catalyzed olefin coordination polymerization. Coord. Chem. Rev. 2020, 416, 213332.

    Article  CAS  Google Scholar 

  10. Wang, Y.; Zhang, W.; Wang, X.; Ma, Y.; Sun, W. H. Iron complex catalysts in ethylene reactivity: from concept to commercialization. Acta Polymerien Sinica (in Chinese) 2023, 54, 564–583.

    CAS  Google Scholar 

  11. Wang, Z.; Mahmood, Q.; Wenjuan Zhang, W.; Sun, W. H. Recent progress on the tridentate iron complex catalysts for ethylene oligo-/polymerization. Adv. Organomet. Chem. 2023, 79, 41–83.

    Article  CAS  Google Scholar 

  12. Britovsek, G. J.; Dorer, B. A.; Gibson, V. C.; Kimberley, B. S.; Solan, G. A., 1997, (BP Chemicals) WO 9912981.

  13. Bennett, A. M. A., 1998, (DuPont Comp) WO 9951550.

  14. Small, B. L.; Brookhart, M.; Bennett, A. M. A. Highly active iron and cobalt catalysts for the polymerization of ethylene. J. Am. Chem. Soc. 1998, 120, 4049–4050.

    Article  CAS  Google Scholar 

  15. Britovsek, G. J. P.; Gibson, V. C.; Kimberley, B. S.; Maddox, P. J.; McTavish, S. J.; Solan, G. A.; White, A. J. P.; Williams, D. J. Novel olefin polymerization catalysts based on iron and cobalt. Chem. Commun. 1998, 7, 849–850.

    Article  Google Scholar 

  16. Britovsek, G. J. P.; Bruce, M.; Gibson, V. C.; Kimberley, B. S.; Maddox, P. J.; Mastroianni, S.; McTavish, S. J.; Redshaw, C.; Solan, G. A.; Stromberg, S.; White, A. J. P.; Williams, D. J. Iron and cobalt ethylene polymerization catalysts bearing 2,6-bis(Imino)pyridyl ligands: synthesis, structures, and polymerization studies. J. Am. Chem. Soc. 1999, 121, 8728–8740.

    Article  CAS  Google Scholar 

  17. Small, B. L.; Brookhart, M. Iron-based catalysts with exceptionally high activities and selectivities for oligomerization of ethylene to linear α-olefins. J. Am. Chem. Soc. 1998, 120, 7143–7144.

    Article  CAS  Google Scholar 

  18. Britovsek, G. J. P.; Mastroianni, S.; Solan, G. A.; Baugh, S. P. D.; Redshaw, C.; Gibson, V. C.; White, A. J. P.; Williams, D. J.; Elsegood, M. R. J. Oligomerisation of ethylene by bis(imino)pyridyliron and -cobalt complexes. Chem. Eur. J. 2000, 6, 2221–2231.

    Article  PubMed  CAS  Google Scholar 

  19. Ma, Z.; Wang, H.; Qui, J.; Xu, D.; Hu, Y. A novel highly active iron/2,6-bis(imino)pyridyl catalyst for ethylene polymerization. Macromol. Rapid Commun. 2001, 22, 1280–1283.

    Article  CAS  Google Scholar 

  20. Abu-Surrah, A. S.; Lappalainen, K.; Piironen, U.; Lehmus, P.; Repo, T.; Leskelä, M. New bis(imino)pyridine-iron(II)- and cobalt(II)-based catalysts: synthesis, characterization and activity towards polymerization of ethylene. J. Organomet. Chem. 2002, 648, 55–61.

    Article  CAS  Google Scholar 

  21. Gibson, V. C.; Spitzmesser, S. K. Advances in non-metallocene olefin polymerization catalysis. Chem. Rev. 2003, 103, 283–315.

    Article  PubMed  CAS  Google Scholar 

  22. Chen, Y.; Chen, R.; Qian, C.; Dong, X.; Sun, J. Halogen-substituted 2,6-bis(imino)pyridyl iron and cobalt complexes: highly active catalysts for polymerization and oligomerization of ethylene. Organometallics 2003, 22, 4312–4321.

    Article  CAS  Google Scholar 

  23. Chen, Y.; Qian, C.; Sun, J. Fluoro-substituted 2,6-bis(imino)pyridyl iron and cobalt complexes: high-activity ethylene oligomerization catalysts. Organometallics 2003, 22, 1231–1236.

    Article  CAS  Google Scholar 

  24. Ivanchev, S. S.; Yakimansky, A. V.; Rogozin, D. G. Quantum-chemical calculations of the effect of cycloaliphatic groups in α-diimine and bis(imino)pyridine ethylene polymerization precatalysts on their stabilities with respect to deactivation reactions. Polymer 2004, 45, 6453–6459.

    Article  CAS  Google Scholar 

  25. Zhang, T.; Sun, W. H.; Li, T.; Yang, X. Influence of electronic effect on catalytic activity of bis(imino)pyridyl Fe(II) and bis(imino)pyrimidyl Fe(II) complexes. J. Mol. Catal. A: Chem. 2004, 218, 119–124.

    Article  CAS  Google Scholar 

  26. Zhong, L.; Li, G.; Liang, G.; Gao, H.; Wu, Q. Enhancing thermal stability and living fashion in α-diimiee–nickel-catylyzed (co)polymerization of ethylene and polar monomer by increasing the steric bulk of ligand backbone. Macromolecules 2017, 50, 2675–2682.

    Article  CAS  Google Scholar 

  27. Zada, M.; Vignesh, A.; Suo, H.; Ma, Y.; Liu, H.; Sun, W. H. N,N,N-type iron(II) complexes consisting sterically hindered dibenzocycloheptyl group: synthesis and catalytic activity towards ethylene polymerization. Mol. Catal. 2020, 492, 110981.

    Article  CAS  Google Scholar 

  28. McTavish, S.; Britovsek, G. J.; Smit, T. M.; Gibson, V. C.; White, A. J. P.; Williams, D. J. Iron-based ethylene polymerization catalysts supported by bis(imino)pyridine ligands: derivatization via deprotonation/alkylation at the ketimine methyl position. J. Mol. Catal. A: Chem. 2007, 261, 293–300.

    Article  CAS  Google Scholar 

  29. Smit, T. M.; Tomov, A. K.; Britovsek, G. J. P.; Gibson, V. C.; White, A. J. P.; Williams, D. J. The effect of imine-carbon substituents in bis(imino)pyridine-base ethylene polymerisation catalysts across the transition series. Catal. Sci. Technol. 2012, 2, 643–655.

    Article  CAS  Google Scholar 

  30. Wang, G.; Jiang, X.; Zhao, W.; Sun, W.-H.; Yao, W.; He, A. Catalytic behavior of Co(II) complexes with 2-(benzimidazolyl)-6-(1-(arylimino)ethyl)pyridine ligands on isoprene stereospecific polymerization. J. Appl. Polym. Sci. 2014, 39703.

  31. Zhang, W.; Chai, W.; Sun, W.-H.; Hu, X.; Redshaw, C.; Hao, X. 2-(1-(Arylimino)ethyl)-8-arylimino-5,6,7-trihydroquinoline iron(II) chloride complexes: synthesis, characterization, and ethylene polymerization behavior. Organometallics 2012, 31, 5039–5048.

    Article  CAS  Google Scholar 

  32. Sun, W.-H.; Kong, S.; Chai, W.; Shiono, T.; Redshaw, C.; Hu, X.; Guo, C.; Hao, X. 2-(1-(Arylimino)ethyl)-8-arylimino-5,6,7-trihydroquinolylcobalt dichloride: synthesis and polyethylene wax formation. Appl. Catal. A 2012, 447–448, 67–73.

    Article  Google Scholar 

  33. Zhang, R.; Huang, Y.; Solan, G. A.; Zhang, W.; Hu, X.; Hao, X.; Sun, W.-H. gem-Dimethyl-substituted bis(imino)-dihydroquinolines as thermally stable supports for highly active cobalt catalysts that produce linear PE waxes. Dalton Trans. 2019, 48, 8175–8185.

    Article  PubMed  CAS  Google Scholar 

  34. Huang, F.; Xing, Q.; Liang, T.; Flisak, Z.; Ye, B.; Hu, X.; Yang, W.; Sun, W. H. 2-(1-Aryliminoethyl)-9-arylimino-5,6,7,8-tetrahydrocycloheptapyridyl iron(II) dichloride: synthesis, characterization, and the highly active and tunable active species in ethylene polymerization. Dalton Trans. 2014, 43, 16818–16829.

    Article  PubMed  CAS  Google Scholar 

  35. Huang, F.; Zhang, W.; Yue, E.; Liang, T.; Hu, X.; Sun, W. H. Controlling the molecular weights of polyethylene waxes using the highly active precatalysts of 2-(1-aryliminoethyl)-9-arylimino-5,6,7,8-tetrahydrocycloheptapyridylcobalt chlorides: synthesis, characterization, and catalytic behavior. Dalton Trans. 2016, 45, 657–666.

    Article  PubMed  CAS  Google Scholar 

  36. Huang, C.; Huang, Y.; Ma, Y.; Solan, G. A.; Sun, Y.; Hu, X.; Sun, W.-H. Cycloheptyl-fused N,N,N′-chromium catalysts with selectivity for vinyl-terminated polyethylene waxes: thermal optimization and polymer functionalization. Dalton Trans. 2018, 47, 13487–13497.

    Article  PubMed  CAS  Google Scholar 

  37. Guo, J.; Wang, Z.; Zhang, W.; Oleynik, I. I.; Vignesh, A.; Oleynik, I. V.; Hu, X.; Sun, Y.; Sun, W. H. Highly linear polyethylenes achieved using thermo-stable and efficient cobalt precatalysts bearing carbocyclic-fused NNN-pincer ligand. Molecules 2019, 24, 1176.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Guo, J.; Zhang, Q.; Oleynik, I. I.; Solan, G. A.; Oleynik, I. V.; Liang, T.; Sun, W. H. Probing the effect of ortho-cycloalkyl ring size on activity and thermostability in cycloheptyl-fused N,N,N-iron ethylene polymerization catalysts. Dalton Trans. 2020, 49, 136–146.

    Article  PubMed  CAS  Google Scholar 

  39. Han, M.; Zhang, Q.; Oleynik, I. I.; Suo, H.; Solan, G. A.; Oleynik, I. V.; Ma, Y.; Liang, T.; Sun, W.-H. High molecular weight polyethylenes of narrow dispersity promoted using bis(arylimino)cyclohepta[b]pyridine-cobalt catalysts ortho-substituted with benzhydryl & cycloalkyl groups. Dalton Trans. 2020, 49, 4774–4784.

    Article  PubMed  CAS  Google Scholar 

  40. Du, S.; Wang, X.; Zhang, W.; Flisak, Z.; Sun, Y.; Sun, W. H. A practical ethylene polymerization for vinyl-polyethylenes: synthesis, characterization and catalytic behavior of α,α′-bisimino-2,3:5,6-bis(pentamethylene)pyridyliron chlorides. Polym. Chem. 2016, 7, 4188–4197.

    Article  CAS  Google Scholar 

  41. Du, S.; Zhang, W.; Yue, E.; Huang, F.; Liang, T.; Sun, W. H. α,α′-Bis(arylimino)-2,3:5,6-bis(pentamethylene)pyridylcobalt chlorides: synthesis, characterization, and ethylene polymerization behavior. Eur. J. Inorg. Chem. 2016, 1748–1755.

  42. Huang, C.; Du, S.; Solan, G. A.; Sun, Y.; Sun, W. H. From polyethylene waxes to HDPE using an α, α′-bis(arylimino)-2,3:5,6-bis(pentamethylene)pyridyl-chromium(III) chloride pre-catalyst in ethylene polymerization. Dalton Trans. 2017, 46, 6948–6957.

    Article  PubMed  CAS  Google Scholar 

  43. Suo, H.; Oleynik, I. I.; Bariashir, C.; Oleynik, I. V.; Wang, Z.; Solan, G. A.; Ma, Y.; Liang, T.; Sun, W. H. Strictly linear polyethylene using co-catalysts chelated by fused bis(arylimino)pyridines: Probing ortho-cycloalkyl ring-size effects on molecular weight. Polymer 2018, 149, 45–54.

    Article  CAS  Google Scholar 

  44. Bariashir, C.; Wang, Z.; Suo, H.; Zada, M.; Solan, G. A.; Ma, Y.; Liang, T.; Sun, W. H. Narrow dispersed linear polyethylene using cobalt catalysts bearing cycloheptyl-fused bis(imino)pyridines; probing the effects of ortho-benzhydryl substitution. Eur. Polym. J. 2019, 110, 240–251.

    Article  CAS  Google Scholar 

  45. Bariashir, C.; Wang, Z.; Solan, G. A.; Huang, C.; Hao, X.; Sun, W.-H. Chromium ethylene polymerization catalysts bearing sterically enhanced α,α′-bis(imino)-2,3:5,6-bis(pentamethylene) pyridines: tuning activity and molecular weight. Polymer 2019, 171, 87–95.

    Article  CAS  Google Scholar 

  46. Bariashir, C.; Wang, Z.; Ma, Y.; Vignesh, A.; Hao, X.; Sun, W.-H. Finely tuned αα′-bis(arylimino)-2,3:5,6-bis(pentamethylene)pyridine-based practical iron precatalysts for targeting highly linear and narrow dispersive polyethylene waxes with vinyl ends. Organometallics 2019, 38, 4455–4470.

    Article  CAS  Google Scholar 

  47. Zhang, Q.; Wu, N.; Xiang, J.; Solan, G. A.; Suo, H.; Ma, Y.; Liang, T.; Sun, W. H. 4,4′-Difluorobenzhydryl-modified bis(imino)-pyridyliron(II)chlorides as thermally stable precatalysts for strictly linear polyethylenes with narrow dispersity. Dalton Trans. 2020, 49, 9425–9437.

    Article  PubMed  CAS  Google Scholar 

  48. Suo, H.; Li, Z.; Oleynik, I. V.; Wang, Z.; Oleynik, I. I.; Ma, Y.; Liu, Q.; Sun, W. H. Achieving strictly linear polyethylenes by the NNN-Fe precatalysts finely tuned with different sizes of ortho-cycloalkyl substituents. Appl. Organomet. Chem. 2020, 34, e5937.

    Article  CAS  Google Scholar 

  49. Zhang, Q.; Yang, W.; Wang, Z.; Solan, G. A.; Liang, T.; Sun, W.-H. Doubly fused N,N,N-iron ethylene polymerization catalysts appended with fluoride substituents; probing catalytic performance via a combined experimental and MLR study. Catal. Sci. Technol. 2021, 11, 4605–4618.

    Article  CAS  Google Scholar 

  50. Wang, Z.; Solan, G. A.; Mahmood, Q.; Liu, Q.; Ma, Y.; Hao, X.; Sun, W. H. Bis(imino)pyridines incorporating doubly fused eight-membered rings as conformationally flexible supports for cobalt ethylene polymerization catalysts. Organometallics 2018, 37, 380–389.

    Article  CAS  Google Scholar 

  51. Wang, Z.; Zhang, R.; Zhang, W.; Solan, G. A.; Liu, Q.; Liang, T.; Sun, W.-H. Enhancing thermostability of iron ethylene polymerization catalysts through N,N,N-chelation of doubly fused α,α′-bis(arylimino)-2,3:5,6-bis(hexamethylene)pyridines. Catal. Sci. Technol. 2019, 9, 1933–1943.

    Article  CAS  Google Scholar 

  52. Wang, Z.; Ma, Y.; Guo, J.; Liu, Q.; Solan, G. A.; Liang, T.; Sun, W. H. Bis(imino)pyridines fused with 6- and 7-membered carbocylic rings as N,N,N-scaffolds for cobalt ethylene polymerization catalysts. Dalton Trans. 2019, 48, 2582–2591.

    Article  PubMed  CAS  Google Scholar 

  53. Wang, Z.; Solan, G. A.; Ma, Y.; Liu, Q.; Liang, T.; Sun, W. H. Fusing carbocycles of inequivalent ring size to a bis(imino)pyridine-iron ethylene polymerization catalyst; distinctive effects on activity, PE molecular weight and dispersity. Research 2019, 1–15.

  54. Huang, F.; Zhang, W.; Sun, Y.; Hu, X.; Solan, G. A.; Sun, W. H. Thermally stable and highly active cobalt precatalysts for vinylpolyethylenes with narrow polydispersities: integrating fused-ring and imino-carbon protection into ligand design. New. J. Chem. 2016, 40, 8012–8023.

    Article  CAS  Google Scholar 

  55. Zhang, Y.; Suo, H.; Huang, F.; Liang, T.; Hu, X.; Sun, W. H. Thermostable 2-(arylimino)benzylidene-9-arylimino-5,6,7,8-tetrahydro cyclohepta[b]pyridyliron(II) precatalysts toward ethylene polymerization and highly linear polyethylenes. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 830–842.

    Article  CAS  Google Scholar 

  56. Cao, X.; He, F.; Zhao, W.; Cai, Z.; Hao, X.; Shiono, T.; Redshaw, C.; Sun, W. H. 2-[1-(2,6-Dibenzhydryl-4-chlorophenylimino)ethyl]-6-[1-(arylimino)ethyl]pyridyliron(II) dichlorides: synthesis, characterization and ethylene polymerization behavior. Polymer 2012, 1870–1880.

  57. Zhang, Q.; Zhang, R.; Han, M.; Yang, W.; Liang, T.; Sun, W. H. 4,4′-Difluorobenzhydryl-modified bis(imino)pyridyliron(II)chlorides as thermally stable precatalysts for strictly linear polyethylenes with narrow dispersity. Dalton Trans. 2020, 49, 7384–7396.

    Article  PubMed  CAS  Google Scholar 

  58. Mahmood, Q.; Guo, J.; Zhang, W.; Ma, Y.; Liang, T.; Sun, W. H. Concurrently improving the thermal stability and activity of ferrous precatalysts for the production of saturated/unsaturated polyethylene. Organometaliics 2018, 37, 957–970.

    Article  CAS  Google Scholar 

  59. Han, M.; Oleynik, I. I.; Ma, Y.; Oleynik, I. V.; Solan, G. A.; Hao, X.; Sun, W.-H. Modulating thermostability and productivity of benzhydryl-substituted bis(imino)pyridine-iron C2H4 polymerization catalysts through ortho-CnH2n−1, (n=5, 6, 8,12) ring size adjustment. Eur. J. Inorg. Chem. 2022, e202200224.

  60. Gibson, V. C.; Solan, G. A. Catalysis without precious metals, ed. by Bullock, R. M., Weinheim, Germany, 2010, p. 111–141.

  61. Mitchell, N. E.; Anderson, W. C.; Long, J. B. K. Mitigating chain-transfer and enhancing the thermal stability of Co-based olefin polymerization catalysts through sterically demanding ligands. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 3990–3995.

    Article  CAS  Google Scholar 

  62. Zhang, W.; Wang, S.; Du, S.; Guo, C. Y.; Hao, X.; Sun, W. H. 2-(1-(2,4-Bis((di(4-fluorophenyl)methyl)-6-methylphenylimino)ethyl)-6-(1-(arylimino)ethyl)pyridylmetal (iron or cobalt) complexes: synthesis, characterization, and ethylene polymerization behavior. Macromol. Chem. Phys. 2014, 215, 1797–1809.

    Article  CAS  Google Scholar 

  63. Yu, J.; Liu, H.; Zhang, W.; Hao, X.; Sun, W.-H. Access to highly active and thermally stable iron procatalysts using bulky 2-[1-(2,6-dibenzhydryl-4-methylphenylimino)ethyl]-6-[1-(arylimino)ethyl] pyridine ligands. Chem. Commun. 2011, 47, 3257–3259.

    Article  CAS  Google Scholar 

  64. Zhao, W.; Yue, E.; Wang, X.; Yang, W.; Chen, Y.; Hao, X.; Cao, X. Sun, W. H. Activity and stability spontaneously enhanced toward ethylene polymerization by employing 2-(1-(2,4-dibenzhydrylnaphthylimino)ethyl)-6-(1-(aryl imino)ethyl)pyridyliron(II) dichlorides. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 988–996.

    Article  CAS  Google Scholar 

  65. Mahmood, Q.; Yue, E.; Zhang, W.; Guo, J.; Zhang, W.; Ma, Y.; Hao, X.; Sun, W.-H. Nitro-functionalized bis(imino)pyridylferrous chlorides as thermo-stable precatalysts for linear polyethylenes with high molecular weights. Polymer 2018, 159, 124–137.

    Article  CAS  Google Scholar 

  66. Zhao, W.; Yu, J.; Song, S.; Yang, W.; Liu, H.; Hao, X.; Redshaw, C.; Sun, W. H. Controlling the ethylene polymerization parameters in iron pre-catalysts of the type 2-[1-(2,4-dibenzhydryl-6-methylphenylimino)ethyl]-6-[1-(arylimino)ethyl]pyridyliron dichloride. Polymer 2012, 53, 130–137.

    Article  CAS  Google Scholar 

  67. Kaul, F. A. R.; Puchta, G. T.; Frey, G. D.; Herdtweck, E.; Herrmann, W. A. Iminopyridine complexes of 3d metals for ethylene polymerization: comparative structural studies and ligand size controlled chain termination. Organometallics 2007, 26, 988–999.

    Article  CAS  Google Scholar 

  68. Guo, L.; Gao, H.; Zang, L.; Zhu, F.; Wu, Q. An unsymmetrical iron(II) bis(imino)pyridyl catalyst for ethylene polymerization: effect of a bulky ortho substituent on the thermostability and molecular weight of polyethylene. Organometallics 2010, 29, 2118–2125.

    Article  CAS  Google Scholar 

  69. Wang, S.; Li, B.; Liang, T.; Redshaw, C.; Li, Y.; Sun, W. H. Synthesis, characterization and catalytic behavior toward ethylene of 2-[1-(4,6-dimethyl-2-benzhydryl-phenylimino)ethyl]-6-[1-(arylimino) ethyl]-pyridylmetal (iron or cobalt) chlorides. Dalton Trans. 2013, 42, 9188–9197.

    Article  PubMed  CAS  Google Scholar 

  70. Yan, Y.; Yuan, S. F.; Liu, M.; Solan, G. A.; Ma, Y.; Liang, T.; Sun, W. H. Investigating the effects of para-methoxy substitution in sterically enhanced unsymmetrical bis(arylimino)pyridine-cobalt ethylene polymerization catalysts. Chinese J. Polym. Sci. 2022, 40, 266–279.

    Article  CAS  Google Scholar 

  71. Guo, L.; Zhang, W.; Cao, F.; Jiang, Y.; Zhang, R.; Ma, Y.; Solan, G. A.; Sun, Y.; Sun, W. H. Remote dibenzocycloheptyl substitution on a bis(arylimino)pyridyl-iron ethylene polymerization catalyst; enhanced thermal stability and unexpected effects on polymer properties. Polym. Chem. 2021, 12, 4214–4225.

    Article  CAS  Google Scholar 

  72. Bariashir, C.; Zhang, R.; Vignesh, A.; Ma, Y.; Liang, T.; Sun, W. H. Enhancing ethylene polymerization of NNN-cobalt(II) precatalysts adorned with a fluoro-substituent. ACS Omega 2021, 6, 4448–4460.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Sheldrick, G. M. SHELXT–Integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8.

    Google Scholar 

  74. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8.

    Google Scholar 

  75. Zhang, Q.; Zuo, Z.; Ma, Y.; Liang, T.; Yang, X.; Sun, W. H. Fluorinated 2,6-bis(arylimino)pyridyl iron complexes targeting bimodal dispersive polyethylenes: probing chain termination pathways via a combined experimental and DFT study. Dalton Trans. 2022, 51, 8290–8302.

    Article  PubMed  CAS  Google Scholar 

  76. Crans, D. C.; Tarlton, M. L.; McLauchlan, C. C. Trigonal bipyramidal or square pyramidal coordination geometry? Investigating the most potent geometry for vanadium phosphatase inhibitors. Eur. J. Inorg. Chem. 2014, 4450–4468.

  77. Cantalupo, S. A.; Ferreira, H. E.; Bataineh, E.; King, A. J.; Petersen, M. V.; Wojtasiewicz, T.; DiPasquale, A. G.; Rheingold, A. L.; Doerrer, L. H. Synthesis with structural and electronic characterization of homoleptic Fe(II)- and Fe(III)-fluorinated phenolate complexes. Inorg. Chem. 2011, 50, 6584–6596.

    Article  PubMed  CAS  Google Scholar 

  78. Addison, A. W.; Rao, T. N.; Reedijk, J.; Van, R. J.; Verschoor, G. C. Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen-sulphur donor ligands; the crystal and molecular structure of aqua [l,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane] copper(II) perchlorate. J. Chem. Soc., Dalton Trans. 1984, 1349–1356.

  79. Britovsek, G. P.; Gibson, V. C.; Kimberley, B. S.; Mastroianni, S.; Redshaw, C.; Solan, G. A.; White, A. J. P.; Williams, D. J. Bis(imino)pyridyl iron and cobalt complexes: the effect of nitrogen substituents on ethylene oligomerisation and polymerization. J. Chem. Soc., Dalton Trans. 2001, 1639–1644.

  80. Britovsek, G. J. P.; Gibson, V. C.; Spitzmesser, S. K.; Tellmann, K. P.; White, A. J. P.; Williams, D. J. Cationic 2,6-bis(imino)pyridine iron and cobalt complexes: synthesis, structures, ethylene polymerisation and ethylene/polar monomer co-polymerisation studies. J. Chem. Soc., Dalton Trans. 2002, 1159–1171.

  81. Deng, L.; Margl, P.; Ziegler, T. Mechanistic aspects of ethylene polymerization by iron(II)-bisimine pyridine catalysts: a combined density functional theory and molecular mechanics study. J. Am. Chem. Soc. 1999, 121, 6479–6487.

    Article  CAS  Google Scholar 

  82. Wang, Q.; Yang, H.; Fan, Z. Efficient activators for an iron catalyst in the polymerization of ethylene. Macromol. Rapid Commun. 2002, 23, 639–642.

    Article  CAS  Google Scholar 

  83. Rhinehart, J. L.; Brown, L. A.; Long, K. A robust Ni(II) α-diimine catalyst for high temperature ethylene polymerization. J. Am. Chem. Soc. 2013, 135, 16316–16319.

    Article  PubMed  CAS  Google Scholar 

  84. Shen, Y.; Zhu, S. Atom transfer radical polymerization of methyl methacrylate mediated by copper bromide-tetraethyldiethylenetriamine grafted on soluble and recoverable poly(ethylene-b-ethylene glycol) supports. Macromolecules 2001, 34, 8603–8609.

    Article  CAS  Google Scholar 

  85. Britovsek, G. J. P.; Gibson, V. C.; Hoarau, O. D.; Spitzmesser, S. K.; White, A. J. P.; Williams, D. J. Iron and cobalt ethylene polymerization catalysts: variations on the central donor. Inorg. Chem. 2003, 42, 3454–3465.

    Article  PubMed  CAS  Google Scholar 

  86. Semikolenova, N. V.; Sun, W.-H.; Soshnikov, I. E.; Matsko, M. A.; Kolesova, O. V.; Zakharov, V. A.; Bryliakov, K. P. Origin of “multisite-like” ethylene polymerization behavior of the single-site nonsymmetrical bis(imino)pyridine iron(II) complex in the presence of modified methylaluminoxane. ACS Catal. 2017, 7, 2868–2877.

    Article  CAS  Google Scholar 

  87. Sun, W.-H.; Tang, X.; Cao, T.; Wu, B.; Zhang, W.; Ma, H. Synthesis, characterization, and ethylene oligomerization and polymerization of ferrous and cobaltous 2-(ethylcarboxylato)-6-iminopyridyl complexes. Organometallics 2004, 23, 5037–5047.

    Article  CAS  Google Scholar 

  88. Gates, D. P.; Svejda, S. A.; Oñate, E.; Killian, C. M.; Johnson, L. K.; White, P. S.; Brookhart, M. Synthesis of branched polyethylene using (R-diimine)nickel(II) catalysts: influence of temperature, ethylene pressure, and ligand structure on polymer properties. Macromolecules 2000, 33, 2320–2334.

    Article  CAS  Google Scholar 

  89. Popeney, C. S.; Rheingold, A. L.; Guan, Z. Nickel(II) and palladium(II) polymerization catalysts bearing a fluorinated cyclophane ligand: stabilization of the reactive intermediate. Organometallics 2009, 28, 4452–4463.

    Article  CAS  Google Scholar 

  90. Lee, L. S.; Ou, H. J.; Hsu, H. F. The experiments and correlations of the solubility of ethylene in toluene solvent. Fluid. Phase. Equilib. 2005, 231, 221–230.

    Article  CAS  Google Scholar 

  91. Yu, J.; Huang, W.; Wang, L.; Redshaw, C.; Sun, W. H. 2-[1-(2,6-Dibenzhydryl-4-methylphenyl-imino)ethyl]-6-[1-(arylimino)ethyl]-pyridylcobalt(II) dichlorides: synthesis, characterization and ethylene polymerization behavior. Dalton Trans. 2011, 40, 10209–10214.

    Article  PubMed  CAS  Google Scholar 

  92. Lai, J.; Zhao, W.; Yang, W.; Redshaw, C.; Liang, T.; Liu, Y.; Sun, W. H. 2-[1-(2,4-Dibenzhydryl-6-methylphenylimino)ethyl]-6-[1-(arylimino)ethyl]pyridylcobalt(II) dichlorides: synthesis, characterization and ethylene polymerization behavior. Polym. Chem. 2012, 3, 787–793.

    Article  CAS  Google Scholar 

  93. He, F.; Zhao, W.; Yang, W.; Cao, X. P.; Liang, T.; Redshaw, C.; Sun, W. H. 2-[1-(2,6-dibenzhydryl-4-chlorophenylimino)ethyl]-6-[1-aryliminoethyl]pyridylcobalt dichlorides: synthesis, characterization and ethylene polymerization behavior. J. Organomet. Chem. 2012, 713, 209–216.

    Article  CAS  Google Scholar 

  94. Wang, S.; Zhao, W.; Hao, X.; Li, B.; Redshaw, C.; Li, Y.; Sun, W. H. 2-(1-{2,6-Bis[bis(4-fluorophenyl)methyl]-4-methylphenylimino}ethyl)-6-[1-(arylimino)ethyl]pyridylcobalt dichlorides: synthesis, characterization and ethylene polymerization behavior. J. Organomet. Chem. 2013, 731, 78–84.

    Article  CAS  Google Scholar 

  95. Yuan, J.; Shi, W.-B.; Kou, H.-Z. Syntheses, crystal structures and magnetism of azide-bridged five-coordinate binuclear nickel(II) and cobalt(II) complexes. Transition Met. Chem. 2015, 40, 807–811.

    Article  CAS  Google Scholar 

  96. Huang, C.; Zhang, Y.; Solan, G. A.; Ma, Y.; Hu, X.; Sun, Y.; Sun, W. H. Vinyl-polyethylene waxes with narrow dispersity obtained by using a thermally robust [bis(imino)trihydroquinolyl]chromium. Catalyst Eur. J. Inorg. Chem. 2017, 4158–4166.

  97. Zhang, S.; Vystorop, I.; Tang, Z.; Sun, W. H. Bimetallic (iron or cobalt) complexes bearing 2-methyl-2,4-bis(6-iminopyridin-2-yl)-1 H-1,5-benzodiazepines for ethylene reactivity. Organometallics 2007, 26, 2456–2460.

    Article  CAS  Google Scholar 

  98. Zhang, S.; Sun, W.-H.; Kuang, X.; Vystorop, I.; Yi, Unsymmetric bimetal(II) complexes: synthesis, structures and catalytic behaviors toward ethylene. J. Organomet. Chem. 2007, 692, 5307–5316.

    Article  CAS  Google Scholar 

  99. Sweet, G. E.; Bell, J. P. Multiple endotherm melting behavior in relation to polymer morphology. J. Polym. Sci., PartA-2 1972, 10, 1273–1283.

    CAS  Google Scholar 

  100. Hay, J. N.; Langford, J. L.; Lloyd, J. R. Variation in unit cell parameters of aromatic polymers with crystallization temperature. Polymer 1989, 30, 489–493.

    Article  CAS  Google Scholar 

  101. Bassett, D. C.; Hodge, A. M.; Olley, R. H. Lamellar morphologies in melt-crystallized polyethylene. Discuss. Faraday Soc. 1979, 68, 218–224.

    Article  Google Scholar 

  102. Bassett, D. C.; Hodge, A. M. On lamellar organization in certain polyethylene spherulites. Proc. R. Soc. London, Ser. A 1978, 359, 121–132.

    Article  CAS  Google Scholar 

  103. Chung, J. S.; Cebe, P. Melting behaviour of poly(phenylene sulphide): 2. Multiple stage melt crystallization. Polymer 1992, 33, 2325–2333.

    Article  CAS  Google Scholar 

  104. Jie, S.; Zhang, D.; Zhang, T.; Sun, W.-H.; Chen, J.; Ren, Q.; Liu, D.; Zheng, G.; Chen, W. Bridged bispyridinyliminodinickel(II) complexes: syntheses, characterization, ethylene oligomerization and polymerization. J. Organomet. Chem. 2005, 690, 1739–1749.

    Article  CAS  Google Scholar 

  105. Zhang, Q.; Lin, W.; Liu, T.; Ye, Z.; Liang, T.; Sun, W. H. Fluorinated ster ically bulky mononuclear and binuclear 2-iminopyridylnickel halides for ethylene polymerization: effects of ligand frameworks and remote substituents. ACS Omega 2021, 6, 30157–30172.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

G.A.S. thanks the Chinese Academy of Sciences for a President’s International Fellowship for Visiting Scientists.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gregory A. Solan or Wen-Hua Sun.

Ethics declarations

The authors declare no interest conflict.

Electronic Supplementary Information

10118_2023_3037_MOESM1_ESM.pdf

High Temperature Iron Ethylene Polymerization Catalysts Bearing N, N, N′-2-(1-(2,4-Dibenzhydryl-6-fluorophenylimino)ethyl)-6-(1-(arylphenylimino)ethyl)pyridines

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bariashir, C., Zhang, QY., Ulambayar, B. et al. High Temperature Iron Ethylene Polymerization Catalysts Bearing N, N, N′-2-(1-(2,4-Dibenzhydryl-6-fluorophenylimino)ethyl)-6-(1-(arylphenylimino)ethyl)pyridines. Chin J Polym Sci 42, 188–201 (2024). https://doi.org/10.1007/s10118-023-3037-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-3037-9

Keywords

Navigation